Machine Learning	Matricola:				
10-Gen-2024 (90 minuti)	Cognome: Nome:				

- 1) Come si calcola l'attivazione (net) di un neurone artificiale? Indicare formula e commentarla.
- 2) Quali sono le condizioni necessarie affinché le tecniche di deep learning siano più efficaci di altri approcci di machine learning?
- 3) Cosa si intende per Clustering esclusivo e Clustering soft (o Fuzzy). Quest'ultimo che vantaggi può avere?
- 4) Indicare la formula di Bayes per la probabilità a posteriori, definendo i termini.
- 5) Dato un training set di 20000 pattern, supponendo di addestrare una rete neurale con SGD (mini-batch size=400) per 60 epoche, riportare, motivandone la risposta:
 - 1. il numero di volte in cui ciascun pattern viene visto dalla rete;
 - 2. il numero di volte in cui ciascun peso della rete viene aggiornato.
- 6) Un problema di multiple linear regression viene risolto ai minimi quadrati ottenendo su un training set i seguenti coefficienti $\beta = [-7.4 \ 2.7 \ 2.5 \ -6.1]$ (dove l'ultimo elemento è il termine noto). Dato un test set costituito dai tre pattern \mathbf{x}_1 , \mathbf{x}_2 e \mathbf{x}_3 (di cui y_1 , y_2 e y_3 sono i valori veri della variabile dipendente):

$$\mathbf{x}_1 = [-3.2 \quad 8.9 \quad -8.1], y_1 = -7.4$$

 $\mathbf{x}_2 = [8.5 \quad 4.3 \quad -0.4], y_2 = 8.6$

$$\mathbf{x}_3 = [-6.7 \quad 1.3 \quad 7.7], y_3 = -2.4$$

determinare il MAE (Mean Absolute Error) sul test set, riportando i principali passaggi intermedi del calcolo.

7) Un multiclassificatore, composto da 4 classificatori combinati a livello di confidenza, viene utilizzato per riconoscere pattern appartenenti a 3 classi (A, B, C). Nella tabella seguente sono riportate le confidenze restituite dai singoli classificatori (C_i) dati in input 3 diversi pattern (p_j). Completare la tabella riportando, per ogni metodo di fusione (Somma, Prodotto, Massimo e Minimo), le confidenze ottenute e la classe di output restituita dal multiclassificatore.

		C_1			C_2		<i>C</i> ₃			C_4		
	A	В	C	A	В	C	A	В	C	A	В	C
p	0.24	0.44	0.32	0.39	0.28	0.33	0.46	0.33	0.21	0.17	0.68	0.15
\boldsymbol{p}_{i}	0.15	0.22	0.63	0.64	0.15	0.21	0.37	0.41	0.22	0.16	0.32	0.52
$p_{:}$	0.61	0.24	0.15	0.60	0.25	0.15	0.30	0.41	0.29	0.15	0.17	0.68