Machine Learning 23-Giu-2021 (90 minuti)

Matricola:		
Cognome:	Nome:	

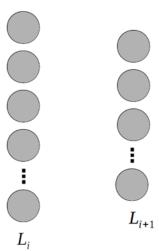
1) In classificazione cosa si intende per superficie decisionale o di separazione? Riportare anche un esempio grafico.

Dispense "Classificazione (1)"

2) Che cosa sono i criteri di clustering? Fare un esempio.

Dispense "Clustering"

3) Definire cosa si intende per apprendimento supervisionato e non supervisionato.


Dispense "Fondamenti"

4) Qual è l'obiettivo di una tecnica di regressione?

Dispense "Regressione"

- 5) Dati due livelli di una rete neurale L_i e L_{i+1} costituiti rispettivamente da 15 e 10 neuroni, indicare:
 - 1. Il numero di connessioni
 - 2. Il numero di pesi distinti

sia nel caso i due livelli costituiscano una porzione di una rete MLP, sia nel caso essi appartengano a una CNN dove ogni neurone del livello i+1 è connesso a 7 neuroni del livello i ($receptive\ field=7$). Motivare infine la risposta.

Svolgimento

Nel caso in cui i livelli siano "completamente connessi" come accade nelle reti MLP il numero di connessioni è pari a $|L_i| \cdot |L_{i+1}|$ quindi $15 \cdot 10 = 150$ connessioni totali.

Nel caso in cui i livelli siano di una CNN con "receptive field" uguale a 7 allora basta moltiplicare 7 per il numero di neuroni del livello i + 1 quindi $7 \cdot 10 = 70$ connessioni totali.

Per quanto riguarda i pesi, nel caso della rete MLP il numero degli stessi è pari al numero di connessioni (quindi 150) mentre per la CNN è pari alla dimensione del *receptive field* (7 - essendo i pesi condivisi).

6) Data una rete neurale MLP e un training set di 1000 pattern, si decide di eseguire il training con SGD e mini-batch di 25 pattern. Si eseguono 8 epoche di addestramento. Calcolare il numero di volte in cui viene calcolato il (vettore) gradiente ed aggiornati i pesi durante l'apprendimento, motivando il calcolo.

Svolgimento

Il numero di volte in cui viene calcolato il vettore gradiente e aggiornati i pesi, corrisponde al numero di iterazioni eseguite.

Avendo 1000 pattern suddivisi in mini-batch di 25 pattern l'uno, ad ogni epoca vengono eseguite $\frac{1000}{25} = 40$ iterazioni. Dovendo eseguire 8 epoche, il numero totale di iterazioni può essere calcolato come $8 \cdot 40 = 320$.

7) Un multiclassificatore, composto da 5 classificatori combinati a livello di decisione utilizzando *Borda* count come tecnica di fusione, viene utilizzato per riconoscere pattern appartenenti a 3 classi. Nella tabella seguente sono riportati i ranking restituiti dai singoli classificatori (C_i) dati in input 4 diversi pattern (p_j). Calcolare la classe assegnata a ogni pattern motivandone la risposta, nell'ipotesi che alla prima classe siano assegnati 5 punti, alla seconda 3 e alla terza 1.

		C_1			C_2		C_3		C_4		C_5				
p_1	2	3	1	3	2	1	1	3	2	3	1	2	1	3	2
p_2	3	1	2	2	1	3	2	1	3	3	2	1	1	2	3
p_3	3	1	2	3	2	1	3	1	2	3	2	1	1	2	3
p_4	1	3	2	1	3	2	1	3	2	2	3	1	3	1	2

Svolgimento

	Punt	Classe		
	1	2	3	scelta
p_1	15	11	19	3
p_2	15	17	13	2
p_3	13	11	21	3
p_4	19	9	17	1