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Incremental Learning by Message Passing  

in Hierarchical Temporal Memory 
 

Davide Maltoni and Erik M. Rehn 

 

Abstract — Hierarchical Temporal Memory (HTM) is a biologically-inspired framework that can be used to learn invariant rep-

resentations of patterns in a wide range of applications. Classical HTM learning is mainly unsupervised and once training is completed 

the network structure is frozen, thus making further training (i.e. incremental learning) quite critical. In this paper we develop a novel 

technique for HTM (incremental) supervised learning based on error minimization. We prove that error backpropagation can be nat-

urally and elegantly implemented through native HTM message passing based on Belief Propagation. Our experimental results show 

that a two stage training composed by unsupervised pre-training + supervised refinement is very effective (both accurate and efficient). 

This is in line with recent findings on other deep architectures.  

1. INTRODUCTION 

Hierarchical Temporal memory (HTM) is a biologically-inspired pattern recognition framework fairly unknown 

to the research community [1]. It can be conveniently framed into Multi-stage Hubel-Wiesel Architectures [2] which 

is a specific subfamily of Deep Architectures [3-5]. HTM tries to mimic the feed-forward and feedback projections 

thought to be crucial for cortical computation. Bayesian Belief Propagation is used in a hierarchical network to learn 

invariant spatio-temporal features of the input data and theories exist to explain how this mathematical model could 

be mapped onto the cortical-thalamic anatomy [7-8].  

A comprehensive description of HTM architecture and learning algorithms is provided in [6], where HTM was al-

so proved to perform well on some pattern recognition tasks, even though further studies and validations are neces-

sary. In [6] HTM is compared with MLP (Multiplayer Perceptron) and CN (Convolutional Network) on some pattern 

recognition problems.  

One limitation of the classical HTM learning is that once a network is trained it is hard to learn from new patterns 

without retraining it from scratch. In other words a classical HTM is well suited for a batch training based on a fixed 

training set, and it cannot be effectively trained incrementally over new patterns that were initially unavailable. In 

fact, every HTM level has to be trained individually and in sequence, starting from the bottom: altering the internal 

node structure at one network level (e.g. coincidences, groups) would invalidate the results of the training at higher 

levels. In principle, incremental learning could be carried out in a classical HTM by updating only the output level, 

but this is a naive strategy that works in practice only if the new incoming patterns are very similar to the existing 

ones in terms of "building blocks". Since incremental training is a highly desirable property of a learning system, we 

were motivated to investigate how HTM framework could be extended in this direction.  

In this paper we present a two-stage training approach, unsupervised pre-training + supervised refinement, that 

can be used for incremental learning: a new HTM is initially pre-trained (batch), then its internal structure is incre-



 

2 

 

mentally updated as new labeled samples become available. This kind of unsupervised pre-training and supervised 

refinement was recently demonstrated to be successful for other deep architectures [3].  

The basic idea of our approach is to perform the batch pre-training using the algorithms described in [6] and then 

fix coincidences and groups throughout the whole network; then, during supervised refinement we adapt the elements 

of the probability matrices     (for the output node) and     (for the intermediate nodes) as if they were the 

weights of a MLP neural network trained with backpropagation. To this purpose we first derived the update rules 

based on the descent of the error function. Since the HTM architecture is more complex than MLP the resulting equa-

tions are not simple; further complications arise from the fact that     and     values are probabilities and need to 

be normalized after each update step. Fortunately we found a surprisingly simple (and computationally light) way to 

implement the whole process through native HTM message passing.  

Our initial experiments show very promising results. Furthermore, the proposed two-stage approach not only ena-

bles incremental learning, but is also helpful for keeping the network complexity under control, thus improving the 

framework scalability.  

2. BACKGROUND 

An HTM has a hierarchical tree structure. The tree is built up by         levels (or layers), each composed of one 

or more nodes. A node in one level is bidirectionally connected to one or more nodes in the level above and the num-

ber of nodes in each level decreases as we ascend the hierarchy. The lowest level,   , is the input level and the high-

est level,           , with typically only one node, is the output level. Levels and nodes in between input and output 

are called intermediate levels and nodes. When an HTM is used for visual inference, as is the case in this study, the 

input level typically has a retinotopic mapping of the input. Each input node is connected to one pixel of the input 

image and spatially close pixels are connected to spatially close nodes. Figure 1 shows a graphical representation of a 

simple HTM, its levels and nodes. 

It is possible, and in many cases desirable, for a HTM to have an architecture where every intermediate node has 

multiple parents. This creates a network where nodes have overlapping receptive fields. Throughout this paper a non-

overlapping architecture is used instead, where nodes only have one parent, to reduce computational complexity.  

2.1 INFORMATION FLOW 

In an HTM the flow of information is bidirectional. Belief propagation is used to pass message both up (feed-

forward) and down (feedback) the hierarchy as new evidence is presented to the network. The notation used here for 

belief propagation (see Figure 2) closely follows Pearl [9] and is adapted to HTMs by George [10]:  

 Evidence coming from below is denoted   . In visual inference this is an image or video frame presented to level 

   of the network.  

 Evidence from the top is denoted    and can be viewed as contextual information. This can for instance be input 

from another sensor modality or the absolute knowledge given by the supervisor training the network. 
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Fig. 1. A four-level HTM designed to work with 16x16 pixel images. Level 0 has 16x16 input nodes, each associated to a single 

pixel. Each level 1 node has 16 child nodes (arranged in a 4×4 region) and a receptive field of 16 pixels. Each level 2 node has 4 

child nodes (2×2 region) and a receptive field of 64 pixels. Finally, the single output node at level 3 has 4 child nodes (2×2 re-

gion) and a receptive field of 256 pixels. 

 Feed-forward messages passed up the hierarchy are denoted   and feedback messages flowing down are denoted 

 . 

 Messages entering and leaving a node from below are denoted    and     respectively, relative to that node. Fol-

lowing the same notation as for the evidence, messages entering and leaving a node from above are denoted     

and   . 

 

Fig. 2.  Notation for message passing between HTM nodes. 
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When the purpose of an HTM is that of a classifier, the feed-forward message of the output node is the posterior 

probability that the input    belongs to one of the problem classes. We denoted this posterior as       
  , where    

is one of    classes.  

2.2 INTERNAL NODE STRUCTURE AND PRE-TRAINING 

HTM training is performed level by level, starting from the first intermediate level. The input level does not need 

any training it just forwards the input. Intermediate levels training is unsupervised and the output level training is 

supervised. For a detailed description, including algorithm pseudocode, the reader should refer to [6]. 

For every intermediate node (Figure 3), a set    of so called coincidence-patterns (or just coincidences) and a 

set,  , of coincidence groups, have to be learned. A coincidence,   , is a vector representing a prototypical activation 

pattern of the node’s children. For a node in   , with input nodes as children, this corresponds to an image patch of 

the same size as the node’s receptive field. For nodes higher up in the hierarchy, with intermediate nodes as children, 

each element of a coincidence,      , is the index of a coincidence group in child  . Coincidence groups, also called 

temporal groups, are clusters of coincidences likely to originate from simple variations of the same input pattern. 

Coincidences found in the same group can be spatially dissimilar but likely to be found close in time when a pattern 

is smoothly moved through the node’s receptive field. By clustering coincidences in this way, exploiting the temporal 

smoothness of the input, invariant representations of the input space can be learned [10]. The assignment of coinci-

dences to groups within each node is encoded in a probability matrix    ; each element                repre-

sents the likelihood that a group,   , is activated given a coincidence   . These probability values are the elements we 

will manipulate to incrementally train a network whose coincidences and groups have previously been learned and 

fixed. 

 

Fig. 3.  Graphical representation of the information processing within an intermediate node. The two central boxes,     and  , 

constitutes the node memory at the end of training. 
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The structure and training of the output node differs from that of the intermediate nodes. In particular the output 

node does not have groups but only coincidences. Instead of memorizing groups and group likelihoods it stores a 

probability matrix    , whose elements                 represents the likelihood of class    given the  coinci-

dence   . This is learned in a supervised fashion by counting how many times every coincidence is the most active 

one (“the winner”) in the context of each class. The output node also keeps a vector of class priors,      , used to 

calculate the final class posterior.  

2.3 FEED-FORWARD MESSAGE PASSING 

Inference in an HTM in conducted through feed-forward belief propagation (see [6]). When a node receives a set 

of messages from its   children,         
     

      
  , a degree of certainty over each of the    coincidence in the 

node is computed. This quantity is represented by a vector    and can be seen as the activation of the node coinci-

dences. The degree of certainty over coincidence   is  

 

                   
        

                       

    
        

 

   
                 

  (1)  

where   is a normalization constant, and σ is a parameter controlling how quickly the activation level decays when 

   deviates from   .  

If the node is an intermediate node, it then computes its feed-forward message    which is a vector of length    and 

is proportional to          where   is the set of all coincidence groups in the node and    the cardinality of  . Each 

component of     is  

 

                            

  

   

 (2)  

where    is the number of coincidences stored in the node.  

The feed-forward message from the output node, the network output, is the posterior class probability and is com-

puted in the following way: 

 

            
                      

  

   

 (3)  

where   is a normalization constant such that       
  
     . 

2.4 FEEDBACK MESSAGE PASSING 

The top-down information flow is used to give contextual information about the observed evidence. Each inter-

mediate node fuses top-down and bottom-up information to consolidate a posterior belief in its coincidence-patterns 

[10]. Given a message from the parent,   , the top-down activation of each coincidence,  , is  
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 (4)  

The belief in coincidence   is then given by: 

 

               
                (5)  

The message sent by an intermediate node (belonging to a level       ) to its the children,   , is computed using 

this belief distribution. The     component of the message to a specific child node is 

 

             
               

  

   

         
                     

     

     

  

   

  

   

 (6)  

where       
       

  is the indicator function defined as 

 

      
           

             
       

              

                                                  

  (7)  

The top-down message sent from the output node is computed in a similar way: 

 

              
       

                   
  

  

   

  

   

 (8)  

Equation 6 and 8 will be important when we, in the next Section, show how to incrementally update the 

    and     matrices to produce better estimates of the class posterior given some evidence from above. 

3. HTM SUPERVISED REFINEMENT 

This Section introduces a novel way to optimize an already trained HTM. The algorithm, called HSR (Htm Su-

pervised Refinement) shares many features with traditional backpropagation used to train multilayer perceptrons and 

is inspired by weight fine-tuning methods applied to other deep belief architectures [3]. It exploits the belief propaga-

tion equations presented above to propagate an error message from the output node back through the network. This 

enables each node to locally update its internal probability matrix in a way that minimizes the difference between the 

estimated class posterior of the network and the posterior given from above, by a supervisor. 

Our goal is to minimize the expected quadratic difference between the network output posterior given the evi-

dence from below,   , and the posterior given the evidence from above,   . To this purpose we employ empirical 

risk minimization [11] resulting in the following loss function: 

 

         
 

 
        

          
   

 

  

   

 (9) 
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where    is the number of classes,        
   is the class posterior given the evidence from above, and       

   is 

the posterior produced by the network using the input as evidence (i.e., inference). The loss function is also a func-

tion of all network parameters involved in the inference process. In most cases    is a supervisor with absolute 

knowledge about the true class    , thus        
    . 

To minimize the empirical risk we first find the direction in which to alter the node probability matrices to de-

crease the loss and then apply gradient descent.  

3.1 OUTPUT NODE UPDATE 

For the output node which does not memorize coincidence groups, we update probability values stored in 

the     matrix, through the gradient descent rule: 

 

              
  

      
                            (10) 

where   is the learning rate. The negative gradient of the loss function is given by: 

 

 
  

      
  

 

 
 

 

      
       

          
   

 

  

   

   

 

          
          

    
       

  

      
 

  

   

  

which can be shown (see Appendix A for a derivation) to be equivalent to:  

 
 

  

      
            (11) 

 

       
     

     
       

          
          

         
         

   

  

   

  (12) 

where                   
  
         

  
   . We call       the error message for class    given some top-down 

and bottom-up evidence.  

3.2 INTERMEDIATE NODES UPDATE 

For each intermediate node we update probability values in the     matrix, through the gradient descent rule: 

 

              
  

      
                            (13) 

For intermediate nodes at level            (i.e., the last but the output level) it can be shown (Appendix B) that: 

 
 

  

      
       

  
    

     
 (14) 
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where   
  is the child portion of the message   

  sent from the output node to its children, but with       replacing 

the posterior       
   (compare Eq. 15 with Eq. 8):  

 

  
             

       
                  

  

   

  

   

 (15) 

Finally, it can be shown that this generalizes to all levels of an HTM, and that all intermediate nodes can be updated 

using messages from their immediate parent. The derivation can be found in Appendix C. In particular, the error 

message from an intermediate node (belonging to a level       ) to its child nodes is given by: 

  
               

       
         

  

      

  

   

  

   

         
       

              
  
    

     

  

   

  

   

 (16) 

These results allow us to define an efficient and elegant way to adapt the probabilities in an already trained HTM 

using belief propagation equations. 

3.3 HSR PSEUDOCODE 

A batch version of HSR algorithm is here provided: 

HSR(   ) 
{ 

 for each training example in   
 {  

  Present the example to the network and perform inference   (eqs. 1,2 and 3) 

  Accumulate 
  

      
 values for the output node (eqs. 11 and 12) 

  Compute the error message   
  (eq. 15) 

  for each child of the output node: 

    call BackPropagate(child,   
  ) (see function below) 

 }  

 Update     by using accumulated 
  

      
   (eq. 10) 

 Renormalize     such that for each class   ,       
  
      

 for each intermediate node 

 {  Update     by using accumulated 
  

      
   (eq. 13) 

  Renormalize     such that for each group   ,       
  
      

 }  

} 

 

function BackPropagate(node,   
  ) 

{ 

 Accumulate 
  

      
 values for the node (eq. 14) 

 if (node level > 1) 

  { Compute the error message   
   (eq. 16) 

   for each child of node: 

    call BackPropagate(child,   
  ) 

} 

} 
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By updating the probability matrices for every training example, instead of at the end of the presentation of a group 

of patterns, an online version of the algorithm is obtained. Both batch and online versions of HSR are investigated in 

the experimental section. 

In many cases it is preferable for the nodes in lower intermediate levels to share memory, so called node sharing 

[6]. This speeds up training and forces all the nodes of the level to respond in the same way when the same stimulus 

is presented at different places in the receptive field. In a level operating in node sharing,     update (eq. 13) must 

be performed only for the master node. 

4. EXPERIMENTS 

To verify the efficacy of the HSR algorithm we designed a number of experiments. These are performed using the 

SDIGIT dataset which is a machine generated digit recognition problem [6]. SDIGIT patterns (16×16 pixels, 

grayscale images) are generated by geometric transformations of class prototypes called primary patterns. The possi-

bility of randomly generating new patterns makes this dataset suitable for evaluating incremental learning algorithms. 

By varying the amount of scaling and rotation applied to the primary patterns we can also control the problem diffi-

culty.  

With                                               we denote a set of   patterns, including, for each of the 10 

digits, the primary pattern and further          patterns generated by simultaneous scaling and rotation of the 

primary pattern according to random triplets           where                 ,                  and   

             . The creation of a test set                                              starts by translating each of 

the 10 primary pattern at all positions that allow it to be fully contained (with a 2 pixel background offset) in the 

16×16 window thus obtaining   patterns; then, for each of the   patterns,          further patterns are generated 

by transforming the pattern according to random triplets          ; the total number of patterns in the test set is then 

      . Examples of generated SDIGIT patterns are shown in Figure 4.   

 

Fig. 4.  Example of SDIGIT patterns. Ten patterns for every class are shown. 

 

Table I (reprinted from [6]) summarizes HTM performance on the SDIGIT problem and compares it against other 

well know classification approaches. HTM accuracy is 71.37%, 87.56% and 94.61% with 50, 100 and 250 training 

patterns, respectively: our goal is to understand if and how accuracy can be improved by incrementally training the 

network through the HSR approach. To this purpose we follow the procedure described below: 
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SDIGIT - test set:                                               (6,200 patterns, 10 classes) 

Training set Approach 
Accuracy (%) Time (hh:mm:ss) Size 

(MB) Train test train test 

             
<50,0.70,1.0,0.7,1.0,40°> 

 

1788 translated patterns 

NN 100 57.92 < 1 sec 00:00:04 3.50 

MLP 100 61.15 00:12:42 00:00:03 1.90 

LeNet5 100 67.28 00:07:13 00:00:11 0.39 

HTM 100 71.37 00:00:08 00:00:13 0.58 

             
<100,0.70,1.0,0.7,1.0,40°> 

 
3423 translated patterns 

NN 100 73.63 < 1 sec 00:00:07 6.84 

MLP 100 75.37 00:34:22 00:00:03 1.90 

LeNet5 100 79.31 00:10:05 00:00:11 0.39 

HTM 100 87.56 00:00:25 00:00:23 1.00 

             
<250,0.70,1.0,0.7,1.0,40°> 
 

8705 translated patterns 

NN 100 86.50 < 1 sec 00:00:20 17.0 

MLP 99.93 86.08 00:37:32 00:00:03 1.90 

LeNet5 100 89.17 00:14:37 00:00:11 0.39 

HTM 100 94.61 00:02:04 00:00:55 2.06 

Table I. HTM compared against other techniques on SDIGIT problem (the table is reprinted from [6]). Three experiments are 

performed with an increasing number of training patterns: 50, 100 and 250. The test set is common across the experiments and 

include 6,200 patterns. NN, MLP and LeNet5 refer to Nearest Neighbor, Multi-Layer Perceptron and Convolutional Network, 

respectively. HTM refers to a four-level Hierarchical Temporal Memory (whose architecture is shown in Figure 1) trained in 

MaxStab configuration with Fuzzy grouping enabled. 

 

Generate a pre-training dataset                                          

Pre-train a new HTM on       (training algs and params are as in [6], leading to Table I results) 

for each epoch             
{  

 Generate a dataset                                              (6,200 patterns) 

 Test HTM on     
 for each iteration             

  call HSR(  )        

} 

Test HTM on     
  

In our experimental procedure we first pre-train a new network using a dataset    (with   patterns) and then for a 

number of epochs we generate new datasets    and apply HSR. At each epoch one can apply HSR for more iterations, 

to favor convergence. However, we experimentally found that a good trade-off between convergence time and 

overfitting can be achieved by performing just two HSR iterations for each epoch. The classification accuracy is cal-

culated using the patterns generated for every epoch but before the network is updated using those patterns. In this 

way we emulate a situation where the network is trained on sequentially arriving patterns.  

4.1 TRAINING CONFIGURATIONS 

We assessed the efficacy of the HSR algorithm for different configurations:  

 batch vs online updating: see Section 3.3; 

 error vs all selection strategy: in error selection strategy, supervised refinement is performed only for    patterns 

that were misclassified by the current HTM, while in all selection strategy is performed over all    patterns; 
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 learning rate  : see Equations 10 and 13. One striking find of our experiments is that the learning rate for the out-

put node should be kept much lower than for the intermediate nodes. In the following we refer to the learning rate 

for output node as    and to the learning rate for intermediate nodes as   . We experimentally found that optimal 

learning rates (for SDIGIT problem) are            and          . 

Figure 5 shows the accuracy achieved by HSR over 20 epochs of incremental learning, starting from an HTM pre-

trained with      patterns. Accuracy at epoch 1 corresponds to the accuracy after pre-training, that is about 72%. 

A few epochs of HSR training are then sufficient to raise accuracy to 93-95%. The growth then slow down and, after 

20 epochs, the network accuracy is in the range [97.0-98.5%] for the different configurations. It is worth remember-

ing that the accuracy reported for each epoch is always measured on unseen data. 

Training over all the patterns (with respect to training over misclassified patterns only) provides a small advantage 

(1-2 percentage). Online update seems to yield slightly better performance during the first few epochs, but then accu-

racy of online and batch update is almost equivalent.  

 

Fig. 5. HSR accuracy over 20 epochs for different configurations, starting with an HTM pre-trained with      patterns. Each 

point is the average of 20 runs.  

Table II compares computation time across different configurations. Applying supervised refinement only to misclas-

sified patterns significantly reduces computation time, while switching between batch and online configurations is 

not relevant for efficiency. So, considering that accuracy of the errors strategy is not far from the all strategy we rec-

ommend the errors configurations when an HTM has to be trained over a large dataset of patterns.  

70%

75%

80%

85%

90%

95%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ac
cu
ra
cy

epoch

Batch Errors

Batch All

Online All

Online Errors



 

12 

 

Configuration 

HSR time 

Entire dataset (6200 patterns) 

1 iteration 

HSR time 

1 pattern 

1 iteration 

Batch, All 19.27 sec 3.11 ms 

Batch, Error 8,37 sec 1.35 ms 

Online, All 22.75 sec 3.66 ms 

Online, Error 8.27 sec 1.34 ms 

Table II. HSR computation times (averaged over 20 epochs). Time values refer to our C# (.net) implementation under Windows 

7 on a Xeon CPU W3550 at 3.07 GHz. 

4.2 HTM SCALABILITY 

One drawback of the current HTM framework is scalability: in fact, the network complexity considerably increas-

es with the number and dimensionality of training patterns. All the experiments reported in [6] clearly show that the 

number of coincidences and groups rapidly increases with the number of patterns in the training sequences. Table III 

shows the accuracy and the total number of coincidences and groups in a HTM pre-trained with an increasing num-

ber of patterns: as expected, accuracy increases with the training set size, but after 250 patterns the accuracy im-

provement slows down while the network memory (coincidences and group) continues to grow markedly leading to 

bulky networks.  

Number of pre-training 

patterns 
Accuracy after pre-training Coincidence and groups 

50 71.37% 7193, 675 

100 87.56% 13175, 1185 

250 94.61% 29179, 2460 

500 93.55% 53127, 4215 

750 96.97% 73277, 5569 

1000 97.44% 92366, 6864 

Table III. HTM statistics after pre-training. The first three rows are consistent with Table III of [6]. 

Figure 6 shows the accuracy improvement by HSR (batch, all configuration) for HTMs pre-trained over 50, 100 and 

250 patterns. It is worth remembering that HSR does not alter the number of coincidences and groups in the pre-

trained network, therefore the complexity after any number of epochs is the same of all the pre-trained HTMs (refer 

to Table III). It is interesting to see that HTMs pre-trained with 100 and 250 patterns after about 10 epochs reach an 

accuracy close to 100%, and to note that even a simple network (pre-trained on 50 patterns) after 20 epochs of super-

vised refinement outperforms an HTM with more than 10 times its number of coincidences and groups (last row of 

Table III).  
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Pre-

training 

patterns 

Accuracy 

after 

20 epochs 

50 98.48% 

100 99.72% 

250 99.91% 

Fig. 6. HSR accuracy over 20 epochs when using an HTM pre-trained with 50, 100 and 250 patterns. HSR configuration used in 

this experiment is batch, all. Here too HSR is applied two times per epoch. Each point is the average of 20 runs. 95% mean con-

fidence intervals are plotted. 

5. DISCUSSION AND CONCLUSIONS 

In this paper we propose a new algorithm for incrementally training hierarchical temporal memory with sequentially 

arriving data. It is computationally efficient and easy to implement due to its close connection to the native belief 

propagation message passing of HTM networks.  

The term      , the error message send from above to the output node (Equation 12), is the information that is 

propagated back through the network and lies at the heart of the algorithm. Its interpretation is not obvious: the first 

part,       
          

  , the difference between the ground truth and network posterior, is easy to understand; 

while the second part,         
         

         
   

  
   , is more mysterious. It is hard to give a good inter-

pretation of this sum but from our understanding it arises due to the fact that we are dealing with probabilities. None 

of the parts can be ignored; tests have shown that they are equally important for the algorithm to produce good re-

sults. 

There are some parameters which need tuning to find the optimal setup for a specific problem. In the experiments 

presented in this paper two iterations per epoch were used, and the optimal learning rate was found therefore. With 

more iterations a lower learning rate would likely be optimal. The difference in suitable learning rate between the 

intermediate levels and the output level is also an important finding and can probably be explained by the fact that 

the     matrix of the output node has a much more direct influence on the network posterior. The output node 

memory is also trained supervised in the pre-training while the intermediate nodes are trained unsupervised, this 

might suggest that there is more room for supervised fine tuning in the intermediate nodes. We ran some experiments 

where we only updated     in the output node: in this case a small performance gain of a few percent has been ob-
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served. The large improvements seen in the experiments in Section 4 are in most part due to the refinement of the 

intermediate node     matrices.  

Several methods can also be used to speed up the updating. One approach is to only train the network with patterns 

that in the previous iteration were misclassified. This reduces the number of updates compared to using all patterns 

for every iteration. A boosting selection strategy can also be used where patterns are randomly sampled with a proba-

bility proportional to the loss generated by the pattern in the previous iteration. Experiments suggest that error selec-

tion strategy gives a few percent lower performance than selecting all patterns, while the boosting strategy lies in 

between selecting all patterns and only errors. 

In general HSR has proven to work very well for the SDIGIT problem and the results give us reason to believe 

that this kind of supervised fine tuning can be extended to more difficult problems. Future work will focus on the 

following issues: 

 applying HSR to other (more difficult) incremental learning problems; 

 check whether, for a difficult problem based on a single training set, splitting the training set in two or more 

parts and using one part for initial pre-training and the rest for supervised refinement, can lead to better accu-

racy (besides reducing the network complexity); 

 extending HSR in order to also finely tune (besides     and    ) the structure of level 1 coincidences   

without altering their number. In fact, while higher level coincidences are "discrete feature selectors" and 

therefore not applicable to continuous gradient descent optimization, level 1 coincidences are continuous fea-

tures and their adaption could lead to further performance improvement. 
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APPENDIX 

SUMMARY OF THE NOTATION USED THROUGHOUT THIS APPENDIX 

 

      
   The class posterior given by the supervisor. This can be assumed to be 1 if    is the true class of the input 

pattern, 0 otherwise. 

      
   The posterior for class   , estimated by the network through inference. 

         The loss function for one training example. This is also a function of all the network parameters:   

and     for all intermediate nodes;  ,     and       for the output node.  

      One element of the probability matrix     memorized by the output node, corresponding to the proba-

bility         . 

     
   

 One element of the probability matrix     memorized by intermediate node  , corresponding to the 

probability         . 

      The prior for class    memorized by the output node. 

      The absolute input pattern density, computed as:                   
  
         

  
   . This corre-

sponds to the normalizing factor in Eq. 3 where          . 

        
Activation of coincidence   in an intermediate node  . Superscripts are used to distinguish coincidence 

activations in different nodes. For the output node the superscript is dropped, i.e.,      refers to activation 

of coincidence   in the output node. 

        
Element s in the feed-forward message vector from an intermediate node   to its parent. Note that here 

the “” and “+” notation is dropped. For feed-forward messages the superscript denotes from which node 

the message is sent. 

        
Element s in the feedback message sent to an intermediate node   from its parent. Note that here the “” 

and “+” notation is dropped. For feedback messages the superscript denotes to which node the message is 

sent. 

  
   
    Element   of the     coincidence in node  . When referring to coincidences in the output node the super-

script is dropped.  
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A. DERIVATION OF THE UPDATE RULE FOR THE OUTPUT NODE 

         
 

 
        

          
   

 

  

   

  

 
  

      
          

          
    

       
  

      
 

  

   

 (17) 

To evaluate 
       

  

      
  we need to consider two cases: 

1) when     we get 

       
  

      
 

 

      
 

           
  
         

            
  
         

  
   

  

 

 
      

            
  
              

               
  
           

 
      

             
  
         

  
    

      
  

 
              

               
  
                     

      
  

 
               

               
  
           

      
  

 
                    

   

     
 (18) 

2) when     we obtain 

       
  

      
 

 

      
 

           
  
         

            
  
         

  
   

  

 

 
      

            
  
              

               
  
           

 
      

             
  
         

  
    

      
  

 
                        

  
          

      
  

 
                  

  

     
 (19) 

We can combine both the cases (Eqs. 18 and 19) in Eq. 17 by introducing an indicator function       , which is 1 

when     and 0 otherwise: 
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This leads to the definition of the error message       

      
     

     
        

          
          

         
         

   

  

   

  (20) 

Finally, we end up at Equation 11:  

 
  

      
             

B. DERIVATION OF THE UPDATE RULE FOR INTERMEDIATE NODES AT THE NEXT-TO-LAST LEVEL  

To find how the loss varies with respect to the probabilities stored in an intermediate node   at level            (i.e.,   

is a child of the output node), we need to compute 
  

      
    

 

 
  

      
   

          
          

    
       

   

      
   

  

   

 (21) 

where 
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(22) 

by inserting Eq. 22 in Eq. 21 we obtain  

 

 
 

     
        

          
     

     

      
   

                      
                 

  

   
 

  

   

  

   
  

 
 

 

     
  

     

      
   

  

   

  

   

                      
         

                         
         

         
    

  

   
  

 

 
 

 

     
   

     

      
   

                    
         

   
  

   

  

   
 

 
 

     
   

     

      
   

        
         

         
                   

  

   

  

   

  

   
  

 

by renaming summation indexes (i  c) in the second row of the above equation we obtain     

 
 

 

     
   

     

      
                       

         
   

  

   

  

   
 

 
 

     
   

     

      
   

        
         

         
                   

  

   

  

   

  

   
  

 

 
 

 

     
   

     

      
                       

         
   

  

   

  

   
 

 
 

     
   

     

      
   

                       
         

         
    

  

   

  

   

  

   
  

 

 

   
     

      
   

       
     

     
       

         
           

         
         

    
  

   
  

  

   

  

   
  

Given the definition of      (Eq. 20) this can be rewritten as 

 

 
  

      
   

   
     

      
   

           
  

   

  

   
 (23) 

 

The derivative of the coincidences activation 
     

      
    is now derived separately. Using Equation 1 (with the super-

script notation used throughout this appendix) we obtain 

 
     

      
   

 
 

      
   

            

 

   

 (24) 

where   is the number of children of the output node. Since the derivative of a product is 
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Equation 24 can be written as 

 

     

      
   

       

 

      
    

          

           
 

 

   

 
(25) 

The derivative of the bottom-up message from child   to the output node is (refer to Eq. 2): 

 
 

      
   

            
 

      
   

           
   

         

  
   

   

  
                          

           
   

where   
   

 is the number of coincidences in child node   of the output node. To express the condition         we 

can use the indicator function         (see Eq. 7). Then, Eq. 25 can be rewritten as 

      

      
   

      
       

       
       

     (26) 

 

Finally, inserting Eq. 26 in Eq. 23, we get 

 

 
  

      
   

 
       

       
         

   
                  

  

   

  

   
  (27) 

By noting that the expression within brackets is very similar to the top-down message from the output node to one of 

its children (Eq. 8), we introduce a new quantity, the error message from the output node: 

 

  
   
            

   
                  

  

   

  

   

  

hence, we can rewrite Eq. 27 as  

 

 
  

      
   

          
  
   
   

       
  

thus obtaining the update rule of Eq. 14. 

C. GENERALIZATION OF THE UPDATE RULE TO INTERMEDIATE NODES AT LOWER LEVELS  

Here we show that the update rule for level            generalizes to lower levels. Let   be a node in level            

and   a node in           . We need to derive  
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 (28) 

Following the same steps leading to Eq. 23 in Appendix B, we here obtain:  

 
  

      
   

   
     

      
   

           
  

   

  

   
    (29) 

where 

 

     

      
   

       

 

      
    

          

           
 

 

   

 
(30) 

Now we expand, first 

 
 

      
   

            
 

      
   

           
   

        

  
   

   

            
   

 
        

      
   

  
   

   

 (31) 

and then 
        

      
    to obtain (activations are calculated in the same way (see Eq. 26) in all intermediate levels): 

 
        

      
   

   

                           

         
       

       
  
  
      

   
           

  (32) 

Plugging Eq. 32 in Eq. 31 and then in Eq. 30 gives 

 
 

      
   

             

 
 

 

 

                             

           
   

          
       

       
  

  
      

   
 

  
   

   

         
   

and 

     

      
   

       

 

      
    

          

           
 

 

   

  
    

           
            

   
          

       

       
  

  
      

   
 

  
   

   

  

where   is now parent of  . Reinserting this into Eq. 29 gives 

 
  

      
   

 
       

       
      

    

           
  
  
      

   
                     

   
 

  
   

   

           

  

   

  

   

  (33) 

 

Now we derive        : 
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Instead of summing over all groups in   and check if       
   
    , we can set          (only one group in   is 

part of   ). This gives us: 

 

           
    

           
  
  
      

   
                     

   
             

  

  
   

   

  

   

  

   

 (35) 

By replacing       
   with       in Eq. 35 we turn         into    

       

 

   
          

    

           
  
  
      

   
                     

   
            

  
   

   

  

   

  

   

 (36) 

Finally, combining Eqs. 36 and 33 we obtain the update rule we were looking for: 

 

 
  

      
   

          
   

      

       
 (37) 

The derivation shown here for level            can be generalized to lower levels (in a network with            by 

noting that Eq. 34 can be written recursively for   
       as:  
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