BAHIA — 06/11/2019

Answering GPSJ Queries in a Polystore:
a Dataspace-Based Approach

HAMDI BEN HAMADOU, ENRICO GALLINUCCI, AND MATTEO GOLFARELLI

FMJ@" €SS}
ﬁ@?ﬂ@m@@
FOU®

Goal

OLAP analyses traditionally run on Data Warehouses that :
SEnsure high-quality data through ETL processes that integrate and clean sources

$ Are typically built on a fixed relational schema obtained through a schema first — data later approach
¥ Not suitable for extemporaneous analysis as it requires a very high initial effort
® Typically hard to evolve in case of a new source is added, or source schemata change

Our goal is to perform OLAP analyses beyond the boundaries of conventional Data Warehouses
o Adopt a more flexible and lightweight approach to data analysis
o Handle heterogeneous schemas and data models

o Adopt a pay-as-you-go integration approach where the integration is progressively carried out by the
user as the available data is explored

Presentation Layout

Functional M%Ldgla?aata Build the
Architecture Query Plan

Structures

Functional Architecture and Assumptions

a I

Types of heterogeneity

© Schema o Data model
o Missing attributes o Relational
o Different data types o Document
o Different naming convention o Column-based

Heterogeneity

dm = relational

dm = document

dm = column

| |
| |
| : _
db =Company | db = Stores i db = Firm
| !
Client i Order i Invoice
| |
1d : orderID ! orderID
firstName | ——» personlD —i—b custlD
lastName i orderDate | orderDate
gender i totalPrice i totalPrice M|SS|ng
birthday ! orderLine [] l -
place i € 2 [productID ! attributes
| S |asin] i
i S title |
|) : '
Vendor l .E price i Product
! — 2 |brand Y, i)
) | S asin
vendor : /‘%’ pid N\ ! H
country I v |idNumber «—— i e
industry i ‘g - name i
i 3 |cost !
~ |
_ i e & | make Y, i —

Heterogeneity

dm = relational dm = document dm = column

| |
| |
I :)
db =Company | db = Stores i db = Firm
| |
Client i Order i Invoice
| |
[id | : |_orderID < ! orderID

firstName | ——» personlD —i—b custlD

lastName i —orderDate | orderDate
| : I . °

gender | totalPrice ! totalPrice D|fferent

birthday | ~orderLine []— i N -

place i = [productID ! aming

= : I °
i S |asm 1 | Conventions
! S 4 title |
i ; . I
Vendor | ¢ % Pﬂ(‘e‘ i Product

| — T.J brand |]

vendor : 2 [pid ! %

country ! \ v [1dNumber e | i title

industry i = {name i
i § cost :
: |

Functional Architecture and Assumptions

44

& PP

Schema information are collected in a data space and eventually integrated in a pay-as-you go
approach (the more integrated concepts you want, the more the effort you need)

A dataspace is a lightweight integration approach providing basic query expressive power on a
variety of data sources, bypassing the complexity of traditional integration approaches and
possibly returning best-effort or approximate answers

Functional Architecture and Assumptions
fi‘i’éiiéﬂi”jf\

]

query results local queries execution

Middleware g=——=—=g——=—=c——3——x

f | | | I

| [I |

Loy [} [wlf (o)} oo
L g g e
O NI R

rewriting -
t | ‘

Queries expressed on the data space are:
1) rewritten on the single sources as a set of local queries
2) results are collected in a central repository

3) a global query further integrates local results so that a global result can be returned to the user

Presentation Layout

Functional Mc;(d[e)lai)aata Build the
Architecture Query Plan

Structures

dm = relational dm = document dm = column

db = Company ! db = Stores i db = Firm
Client i Order i Invoice
id } i orderID < i orderlD
. firstName ! » personlD E custID
tt r I u te S lastName i orderDate : orderDate
gender i totalPrice i totalPrice
birthday ! orderLine [] i
c - place i = [productID !
We define an attribute as a=(dm, db, col, name) | % | asin |
| S Htitle :
dm = {relational | column|document} is the data mogdel Vendor | 2 |price | Product
I — é | brand |)
. vendor : Z [pid ! a.sim
db € D is the database name country | S lidNumber |« o[
industry i = name :
. . . | = I
col is the collection name in db : /{;;. cost] |
! p| S [TIAKT !
name is the name of the attribute in the coffection col /
. A
. . . Ch di
a,: (relational, Company,Client,id) a.® o o
a4 : (document, Stores, Order, orderLine.cost) 1 A6

o
a
a
In a polystore relations are not first citizen \ 5@ 8

Mapping & Features

Dataspace must be able to hide schema heterogeneity and to provide a global representation

A mapping is a relationship between two attributes

a'and a". We define a mapping as m=(a',a", ¢, ¢,v), where

a',a" € A*

¢ is the type of the mapping [sameAs | 7]

¢ is atranscoding function to express a' values in a" format

y is the semantics describing the meaning of the reIationship/
(limitedly to fk mappings).

a.®
m,: (a,, a,, Tk, tolnt(), ’client order’’) {—\. - /\a; a1g

m, : (a5, a5, sameAs,I()) —

Mapping & Features

Single mappings are not sufficient since there can be sets of attributes representing the same concept

We define a feature as f=(hame,a,M), where
name is the name of the feature
a is the representative attribute of the feature /

M is a set of sameAs mappings a
al®

f.: (orderline.price, ag, {m3}) — a@ @ /@i\/@a
a 8

fg: (orderline.brand, a,,, {m,,ms}) ag

A Dataspace D is a set of feature

Since in a dataspace features represents attribute, there is no notion of relations as first citizen

GPSJ queries

The query expressiveness that we consider covers a wide class of queries by composing three basic
SQL operators: selection, join and generalized projection.

SELECT orderline.ProductlD, avg(orderlLine.price)
FROM [....]
WHERE orderlLine.Brand = ‘ABC’ AND client.firstName="John” AND client.lastName="Smith”

GROUP BY orderLine.ProductiD

Given a dataspace D, we define a query as q=(q, ,d, , d,)
qn = {fg}

a, = {(f7,avg)}

a,= {(f,,"John”), (f;,"smith”), (f8,"ABC")}

The Data Graph

To build a query plan we rely on a set of structural relationships between attributes that are
modeled in a data graph

The data graph G is a graph G=(A*,E) where A* is the set of all the attributes of all databases

while an edge e € E between two attributes a' and a" indicates the existence of a relationship,
which is described by its type type(e) /

o sibling: represented as a' «» a", it indicates that a' and a"
are in the same collection and at the same nesting level,

onested: represented as a' ™ a', it indicates that a'
is nested inside a''; a

o fl: represented as a' @' s a" it indicates that
the values of a'' are referred to the values of a'.

wore sibling arcs are omitted for readibility

The Query Graph

The query graph G =(A'c A*,E’ E) is the minimally connected subgraph of the data graph G
such that:

1. A'Dattr(q) all attributes involved in the query are in the query graph

2. there exists A" c A’ s.t. A'"~J, A" O q,, V(aeA", a'eA’) it is a=a’ q can be answered

since in the query are in the query graph since all the events are represented at the right
level of granularity

Presentation Layout

Functional M%Ldgla?aata Build the
Architecture Query Plan

Structures

Build the Query Plan

Algorithm 1 Definition of the NRA execution plan for a query ¢

Input ¢ = (¢r.q~.q0): a query; G, = (A’, E") the query graph for q.

Output P: the NRA plan of q.

l: P+ o

§; 8}; K it Cranh(C] Split G,;: one split or each
2: GPy < partitionQueryGraph(Gq) 4 involved database & each
X, 1UI cl.].l. qu = qu (J.U ue ath

D: CP <+ o queyp

6: C <+ identifyAccessedCollecti GP!

¢ identifyAccessedCollections(G) exploit fk relationships &

7 for all col € C do db()

8: CP.,; < defineCollectionPlan(col, GPqi)

9: LP; < defineLocalJoins(C P, GP;’) a' ks 3" g db(a') = db(a")

10: P <« defineGlobal Plan(LP, G)
11: return P

Build the Query Plan

Algorithm 1 Definition of the NRA execution plan for a query ¢

Input ¢ = (¢r.q~.q0): a query; G, = (A’, E") the query graph for q.
Output P: the NRA plan of q.
l: P+ o

. LP +— O

: o For each portion define
. GP, «+ pa/r.tztzonQue?‘yG?‘aph(Gq) the local plan
. for all GP’ € GP, do

1)

2
3
4
(5. CP+ o
O:
7
&
\

C «+ identifyAccessedCollectionS(GP;’)
for all col € C do

CP.,; < defineCollectionPlan(col, GPqi)
LP; < defineLocalJoins(CP,GP}) Y,

10: P <« defineGlobal Plan(LP, G)
11: return P

Build the Query Plan

Algorithm 1 Definition of the NRA execution plan for a query ¢

Input ¢ = (¢r.q~.q0): a query; G, = (A’, E") the query graph for q.
Output P: the NRA plan of q.

l: P+ o

20 LP+@& Define the global plan:

3: GP, < partitionQueryGraph(G,)

451: for Oai__l) GF ‘ €GPy do 1. Add ajoin condition
. < .

6: C «+ identifyAccessedCollectionS(GP;) foreschisplit

-. " 1 col € C do 2. Aggregatedatatoq,
' ora . applying operators q,

8: CP.,; < defineCollectionPlan(col, GP;)

0- LP; < defineLocalJoins(C P, GP;)

10: P <« defineGlobal Plan(LP, G)
I11: return F

Building the Plan: Split the Query Graph

Building the Plan: Split the Query Graph

Building the Plan: Define the Local Plans

orderLine.productld Y avg(orderLine.price)

nt personld / id,

(orderLine.productld V orderLine.id) / orderLine.productld,
o (firstName,=,"John") A (orderLine.price V orderLine.cost) / orderLine.price,

(lastName,=,"Smith")

o (orderLine.brand,=,"ABC") V (orderLine.make,=,"ABC")

C (Company, Client)
M orderLine
C (Stores, Order)

Nesting is solved
exploiting nested arcs

Building the Plan: Define t

orderLine.productld Y avg(orderLine.price)
nt personld / id,

orderLine.productld V orderLine.id) / orderLine.productld, J

o (firstName,=,"John") A (orderLine.price V orderLine.cost) / orderLine.price,
(lastName,=,"Smith")

o (orderLine.brand,=,"ABC") V (orderLine.make,=,"ABC")

C (Company, Client)
M orderLine
C (Stores, Order)

Features and mappings enable
heterogenity handling

Building the Plan: Define t

orderLine.productld Y avg(orderLine.price)

nt personld / id,

(orderLine.productld V orderLine.id) / orderLine.productld,
o (firstName,=,"John") A (orderLine.price V orderLine.cost) / orderLine.price,

(lastName,=,"Smith")

o (orderLine.brand,=,"ABC") V (orderLine.make,=,"ABC")

C (Company, Client)
M orderLine
C (Stores, Order)

ojections solves semantic equivalence and data format heteroneity
by applying transcoding functions @

Building the Plan: Define the Global Plan

orderLine.productld Y avg(orderLine.price)

—
nt personld / id,

(orderLine.productld V orderLine.id) / orderLine.prod 'II.

o (firstName,=,"John") A (orderLine.price V orderLine.cost) / orderLine.price,
(lastName,=,"Smith")

o (orderLine.brand,=,"ABC") V (orderLine.make,=,"ABC")

C (Company, Client)
M orderLine
C (Stores, Order)

Partial results are joined: for each splits a join is added

Preliminary tests

global query
execution "' N\ ,
|

query results

local queries execution

Middleware g=—=——=— ———r——
o I I I
| @ el : G : di3 :
. = IS D
ue
rewritlglg - _J J __J

q
e
A

Preliminary tests
fi‘éﬁiiiiie'jf\

query results Middlevflare o _lo_cci iq_ue_rief i{@ﬁuﬁ@ﬁ{
) I I
PEchE]

Cassandra 3.11

I
| [
I I
. v
- _
MongoDB 3.4.0

Preliminary tests

global query [—

e ¢ SparkSQL Spark 2.2.0 |

query results

l Middleware g=—=——=— e

f
) [[w) [w)

i)
i | J
&--
MongoDB 3.4.0 Cassandra 3.11

Preliminary tests

global query —

) eveeution Y §parksQL Spark 2.2.0 |
query results roTwTgTeTTeD =

Middleware g=—=——=— ———r——

4 |
l 11 l 12 l 13
l L)) Mi mlm{]
a- !
MongoDB 3.4.0 1]

Benchmark based on Unibench extended with heterogeneity, 142K records

HW: single server Intel I5 i5-4670 - 3.4 GHz - 4 cores - 16 GB of RAM

Preliminary tests

ey A Middleware == —W—V:i—w—y = F——-
f -
o)) @Ji [az) ! M{]

a-
MongoDB 3.4.0

Benchmark based on Unibench extended with heterogeneity, 142K records

Cassandra 3.11

HW: single server Intel 15 i5-4670 - 3.4 GHz - 4 cores - 16 GB of RAM

Execution of the running example query takes 6,9 secs

Plan generation Parallel Local query plans execution Data collection at Spark Global query plan execution

Future Works

Expressiveness

Cover horizontal partitioning of the data: the same information can span on several
collections and on different DBs.

Support additional data models (e.g., key-value and graph)
Enable a broader set of queries than GPSJs

User-system interaction: introduce KPIs to provide further insights to the user with respect to
the underlying heterogeneity of the data

Complete prototype implementation

