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Goal
OLAP analyses traditionally run on Data Warehouses that :
Ensure high-quality data through ETL processes that integrate and clean sources

Are typically built on a fixed relational schema obtained through a schema first – data later approach

Not suitable for extemporaneous analysis as it requires a very high initial effort

Typically hard to evolve in case of a new source is added, or source schemata change

Our goal is to perform OLAP analyses beyond the boundaries of conventional Data Warehouses
o Adopt a more flexible and lightweight approach to data analysis

o Handle heterogeneous schemas and data models

o Adopt a pay-as-you-go integration approach where the integration is progressively carried out by the 
user as the available data is explored
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Functional Architecture and Assumptions

Types of heterogeneity
o Schema

o Missing attributes

o Different data types

o Different naming convention

o Data model
o Relational

o Document

o Column-based
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Functional Architecture and Assumptions

Schema information are collected in a data space and eventually integrated in a pay-as-you go 
approach (the more integrated concepts you want, the more the effort you need)

A dataspace is a lightweight integration approach providing basic query expressive power on a 
variety of data sources, bypassing the complexity of traditional integration approaches and 
possibly returning best-effort or approximate answers

Dataspace
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Functional Architecture and Assumptions

Queries expressed on the data space are:

1) rewritten on the single sources as a set of local queries

2) results are collected in a central repository

3) a global query further integrates local results so that a global result can be returned to the user
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Attributes
We define an attribute as a=(dm, db, col, name)

o dm = {relational|column|document} is the data model

o db  D is the database name

o col is the collection name in db

o name is the name of the attribute in the collection col

o a1: (relational, Company,Client,id)

o a9 : (document, Stores, Order, orderLine.cost)

In a polystore relations are not first citizen
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Mapping & Features
Dataspace must be able to hide schema heterogeneity and to provide a global representation

A mapping is a relationship between two attributes
a' and a''. We define a mapping as m=(a',a'',,,), where 
a',a''  A*
 is the type of the mapping [sameAs | fk] 
 is a transcoding function to express a' values in a'' format
 is the semantics describing the meaning of the relationship

(limitedly to fk mappings).

o m1: (a4, a1, fk, toInt(), ’’client order’’)

o m2 : (a6, a7, sameAs,I())
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Mapping & Features
Single mappings are not sufficient since there can be sets of attributes representing the same concept

We define a feature as f=(name,a,M), where 
name is the name of the feature 
a is the representative attribute of the feature
M is a set of sameAs mappings

o f1: (id, a2, )

o ………….

o f7: (orderline.price, a8, {m3})

o f8: (orderline.brand, a10, {m4,m5})

A Dataspace D is a set of feature

Since in a dataspace features represents attribute, there is no notion of relations as first citizen
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GPSJ queries
The query expressiveness that we consider covers a wide class of queries by composing three basic 
SQL operators: selection, join and generalized projection.

SELECT         orderLine.ProductID, avg(orderLine.price)
FROM [….]
WHERE        orderLine.Brand = ‘ABC’ AND client.firstName=”John” AND client.lastName=”Smith”
GROUP BY   orderLine.ProductID

Given a dataspace D, we define a query as q=(q ,q , q)

q = {f6}

q = {(f7,avg)}

q= {(f2,”John”), (f3,”smith”), (f8,”ABC”)}
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The Data Graph
To build a query plan we rely on a set of structural relationships between attributes that are 
modeled in a data graph

The data graph G is a graph G=(A*,E) where A* is the set of all the attributes of all databases 
while an edge e  E between two attributes a' and a'' indicates the existence of a relationship, 
which is described by its type type(e)

osibling: represented as a'  a'', it indicates that a' and a'' 
are in the same collection and at the same nesting level;

onested: represented as a'  a'', it indicates that a' 
is nested inside a'';

o fk: represented as a' a'  a'', it indicates that 
the values of a'' are referred to the values of a'. 

n

fk

More sibling arcs are omitted for readibility
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The Query Graph
The query graph Gq=(A' A*,E’  E) is the minimally connected subgraph of the data graph G 
such that:

1. A'  attr(q) all attributes involved in the query are in the query graph

2. there exists A''  A‘, s.t. A'', A''  q , (aA'', a'A') it is aa’ q can be answered 
since in the query are in the query graph since all the events are represented at the right 
level of granularity
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Build the Query Plan

Split Gq: one split or each
involved database & each

query path

exploit fk relationships & 
db(  )

a'  a'' &  db(a')  db(a'')fk
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Build the Query Plan
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Build the Query Plan

Define the global plan:

1. Add a join condition
for each split

2. Aggregate data to q
applying operators q
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Building the Plan: Split the Query Graph
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Building the Plan: Split the Query Graph
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(orderLine.price ⋁ orderLine.cost) / orderLine.price,

Building the Plan: Define the Local Plans

⋈ id=id

orderLine.productId ϒ avg(orderLine.price)

π id

C (Company, Client)

σ (firstName,=,"John") ⋀

(lastName,=,"Smith")

C (Stores, Order)

σ (orderLine.brand,=,"ABC") ⋁ (orderLine.make,=,"ABC")

(orderLine.productId ⋁ orderLine.id) / orderLine.productId,

π personId / id,

μ orderLine

global plan

Nesting is solved
exploiting nested arcs

dm = relational
db = Company

dm = document
db = Stores

SparkSQL
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(orderLine.price ⋁ orderLine.cost) / orderLine.price,

Building the Plan: Define the Local Plans

⋈ id=id

orderLine.productId ϒ avg(orderLine.price)

π id

C (Company, Client)

σ (firstName,=,"John") ⋀

(lastName,=,"Smith")

C (Stores, Order)

σ (orderLine.brand,=,"ABC") ⋁ (orderLine.make,=,"ABC")

(orderLine.productId ⋁ orderLine.id) / orderLine.productId,

π personId / id,

μ orderLine

global plan
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(orderLine.price ⋁ orderLine.cost) / orderLine.price,

Building the Plan: Define the Local Plans

⋈ id=id

orderLine.productId ϒ avg(orderLine.price)

π id

C (Company, Client)

σ (firstName,=,"John") ⋀

(lastName,=,"Smith")

C (Stores, Order)

σ (orderLine.brand,=,"ABC") ⋁ (orderLine.make,=,"ABC")

(orderLine.productId ⋁ orderLine.id) / orderLine.productId,

π personId / id,

μ orderLine

global plan
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Projections solves semantic equivalence and data format heteroneity
by applying transcoding functions 
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(orderLine.price ⋁ orderLine.cost) / orderLine.price,

Building the Plan: Define the Global Plan

⋈ id=id

orderLine.productId ϒ avg(orderLine.price)

π id

C (Company, Client)

σ (firstName,=,"John") ⋀

(lastName,=,"Smith")

C (Stores, Order)

σ (orderLine.brand,=,"ABC") ⋁ (orderLine.make,=,"ABC")

(orderLine.productId ⋁ orderLine.id) / orderLine.productId,

π personId / id,

μ orderLine

global plan
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db = Company

dm = document
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Partial results are joined: for each splits a join is added
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Preliminary tests

oBenchmark based on Unibench extended with heterogeneity, 142K records

oHW: single server Intel I5 i5-4670 - 3.4 GHz - 4 cores - 16 GB of RAM 
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Preliminary tests

oBenchmark based on Unibench extended with heterogeneity, 142K records

oHW: single server Intel I5 i5-4670 - 3.4 GHz - 4 cores - 16 GB of RAM 

oExecution of the running example query takes 6,9 secs
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Future Works
Expressiveness

oCover horizontal partitioning of the data: the same information can span on several 
collections and on different DBs.

oSupport additional data models (e.g., key-value and graph)

oEnable a broader set of queries than GPSJs

User-system interaction: introduce KPIs to provide further insights to the user with respect to 
the underlying heterogeneity of the data

Complete prototype implementation
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