
Answering GPSJ Queries in a Polystore:
a Dataspace-Based Approach

HAMDI BEN HAMADOU, ENRICO GALLINUCCI , AND MAT TEO GOLFARELLI

BAHIA – 06/11/2019

Goal
OLAP analyses traditionally run on Data Warehouses that :
Ensure high-quality data through ETL processes that integrate and clean sources

Are typically built on a fixed relational schema obtained through a schema first – data later approach

Not suitable for extemporaneous analysis as it requires a very high initial effort

Typically hard to evolve in case of a new source is added, or source schemata change

Our goal is to perform OLAP analyses beyond the boundaries of conventional Data Warehouses
o Adopt a more flexible and lightweight approach to data analysis

o Handle heterogeneous schemas and data models

o Adopt a pay-as-you-go integration approach where the integration is progressively carried out by the
user as the available data is explored

2

Presentation Layout

Functional
Architecture

Model Data
& Data

Structures

Build the
Query Plan

3

Functional Architecture and Assumptions

Types of heterogeneity
o Schema

o Missing attributes

o Different data types

o Different naming convention

o Data model
o Relational

o Document

o Column-based

4

Heterogeneity

Missing
attributes

5

Heterogeneity

Different
Naming

Conventions

6

Functional Architecture and Assumptions

Schema information are collected in a data space and eventually integrated in a pay-as-you go
approach (the more integrated concepts you want, the more the effort you need)

A dataspace is a lightweight integration approach providing basic query expressive power on a
variety of data sources, bypassing the complexity of traditional integration approaches and
possibly returning best-effort or approximate answers

Dataspace

7

Functional Architecture and Assumptions

Queries expressed on the data space are:

1) rewritten on the single sources as a set of local queries

2) results are collected in a central repository

3) a global query further integrates local results so that a global result can be returned to the user

Middleware

ql4
ql3
ql2
ql1
qg

Dataspace Query

rewriting

q

ql1 ql2 ql3 ql4

qg

query results local queries execution

global query

execution

.

8

Presentation Layout

Functional
Architecture

Model Data
& Data

Structures

Build the
Query Plan

9

Attributes
We define an attribute as a=(dm, db, col, name)

o dm = {relational|column|document} is the data model

o db  D is the database name

o col is the collection name in db

o name is the name of the attribute in the collection col

o a1: (relational, Company,Client,id)

o a9 : (document, Stores, Order, orderLine.cost)

In a polystore relations are not first citizen

a6

a8

a1

a3

a7

a2

a5

a4

a9

a10

a11

a12

10

Mapping & Features
Dataspace must be able to hide schema heterogeneity and to provide a global representation

A mapping is a relationship between two attributes
a' and a''. We define a mapping as m=(a',a'',,,), where
a',a''  A*
 is the type of the mapping [sameAs | fk]
 is a transcoding function to express a' values in a'' format
 is the semantics describing the meaning of the relationship

(limitedly to fk mappings).

o m1: (a4, a1, fk, toInt(), ’’client order’’)

o m2 : (a6, a7, sameAs,I())

a6

a8

a1

a3

a7

a2

m1
m2

m3

a5

a4

a9

a10

a11

m4

a12m5

11

Mapping & Features
Single mappings are not sufficient since there can be sets of attributes representing the same concept

We define a feature as f=(name,a,M), where
name is the name of the feature
a is the representative attribute of the feature
M is a set of sameAs mappings

o f1: (id, a2, )

o ………….

o f7: (orderline.price, a8, {m3})

o f8: (orderline.brand, a10, {m4,m5})

A Dataspace D is a set of feature

Since in a dataspace features represents attribute, there is no notion of relations as first citizen

a6

a8

a1

a3

a7

a2

m1

f6

m3

a5

a4

a9

a10

a11

m4

a12m5

f1

f7

f8
m2

12

GPSJ queries
The query expressiveness that we consider covers a wide class of queries by composing three basic
SQL operators: selection, join and generalized projection.

SELECT orderLine.ProductID, avg(orderLine.price)
FROM [….]
WHERE orderLine.Brand = ‘ABC’ AND client.firstName=”John” AND client.lastName=”Smith”
GROUP BY orderLine.ProductID

Given a dataspace D, we define a query as q=(q ,q , q)

q = {f6}

q = {(f7,avg)}

q= {(f2,”John”), (f3,”smith”), (f8,”ABC”)}

13

The Data Graph
To build a query plan we rely on a set of structural relationships between attributes that are
modeled in a data graph

The data graph G is a graph G=(A*,E) where A* is the set of all the attributes of all databases
while an edge e  E between two attributes a' and a'' indicates the existence of a relationship,
which is described by its type type(e)

osibling: represented as a'  a'', it indicates that a' and a''
are in the same collection and at the same nesting level;

onested: represented as a'  a'', it indicates that a'
is nested inside a'';

o fk: represented as a' a'  a'', it indicates that
the values of a'' are referred to the values of a'.

n

fk

More sibling arcs are omitted for readibility

a6

a8

a1

a3

a7

a2

a5

a4

a9

a10

a11

14

The Query Graph
The query graph Gq=(A' A*,E’  E) is the minimally connected subgraph of the data graph G
such that:

1. A'  attr(q) all attributes involved in the query are in the query graph

2. there exists A''  A‘, s.t. A'', A''  q , (aA'', a'A') it is aa’ q can be answered
since in the query are in the query graph since all the events are represented at the right
level of granularity

15

Presentation Layout

Functional
Architecture

Model Data
& Data

Structures

Build the
Query Plan

16

Build the Query Plan

Split Gq: one split or each
involved database & each

query path

exploit fk relationships &
db()

a'  a'' & db(a')  db(a'')fk

17

Build the Query Plan

For each portion define
the local plan

18

Build the Query Plan

Define the global plan:

1. Add a join condition
for each split

2. Aggregate data to q
applying operators q

19

Building the Plan: Split the Query Graph

a6

a8

a1

a3

a7

a2

a5

a4

a9

a10

a11

20

Query Graph

Building the Plan: Split the Query Graph

a6

a8

a1

a3

a7

a2

a5

a4

a9

a10

a11

21

(orderLine.price ⋁ orderLine.cost) / orderLine.price,

Building the Plan: Define the Local Plans

⋈ id=id

orderLine.productId ϒ avg(orderLine.price)

π id

C (Company, Client)

σ (firstName,=,"John") ⋀

(lastName,=,"Smith")

C (Stores, Order)

σ (orderLine.brand,=,"ABC") ⋁ (orderLine.make,=,"ABC")

(orderLine.productId ⋁ orderLine.id) / orderLine.productId,

π personId / id,

μ orderLine

global plan

Nesting is solved
exploiting nested arcs

dm = relational
db = Company

dm = document
db = Stores

SparkSQL

a6

a8

a1

a3

a7

a2

a5

a4

a9

a10

a11

22

(orderLine.price ⋁ orderLine.cost) / orderLine.price,

Building the Plan: Define the Local Plans

⋈ id=id

orderLine.productId ϒ avg(orderLine.price)

π id

C (Company, Client)

σ (firstName,=,"John") ⋀

(lastName,=,"Smith")

C (Stores, Order)

σ (orderLine.brand,=,"ABC") ⋁ (orderLine.make,=,"ABC")

(orderLine.productId ⋁ orderLine.id) / orderLine.productId,

π personId / id,

μ orderLine

global plan

dm = relational
db = Company

dm = document
db = Stores

SparkSQL

a6

a8

a1

a3

a7

a2

a5

a4

a9

a10

a11

a6

a8

a1

a3

a7

a2

m1

f6

m3

a5

a4

a9

a10

a11

m4

a12m5

f1

f7

f8
m2

Features and mappings enable
heterogenity handling

23

(orderLine.price ⋁ orderLine.cost) / orderLine.price,

Building the Plan: Define the Local Plans

⋈ id=id

orderLine.productId ϒ avg(orderLine.price)

π id

C (Company, Client)

σ (firstName,=,"John") ⋀

(lastName,=,"Smith")

C (Stores, Order)

σ (orderLine.brand,=,"ABC") ⋁ (orderLine.make,=,"ABC")

(orderLine.productId ⋁ orderLine.id) / orderLine.productId,

π personId / id,

μ orderLine

global plan

dm = relational
db = Company

dm = document
db = Stores

SparkSQL

a6

a8

a1

a3

a7

a2

a5

a4

a9

a10

a11

a6

a8

a1

a3

a7

a2

m1

f6

m3

a5

a4

a9

a10

a11

m4

a12m5

f1

f7

f8
m2

Projections solves semantic equivalence and data format heteroneity
by applying transcoding functions 

24

(orderLine.price ⋁ orderLine.cost) / orderLine.price,

Building the Plan: Define the Global Plan

⋈ id=id

orderLine.productId ϒ avg(orderLine.price)

π id

C (Company, Client)

σ (firstName,=,"John") ⋀

(lastName,=,"Smith")

C (Stores, Order)

σ (orderLine.brand,=,"ABC") ⋁ (orderLine.make,=,"ABC")

(orderLine.productId ⋁ orderLine.id) / orderLine.productId,

π personId / id,

μ orderLine

global plan

dm = relational
db = Company

dm = document
db = Stores

SparkSQL

a6

a8

a1

a3

a7

a2

a5

a4

a9

a10

a11

Partial results are joined: for each splits a join is added

25

Preliminary tests

Middleware

ql4
ql3
ql2
ql1
qg

Dataspace Query

rewriting

q

ql1 ql2 ql3

qg

query results local queries execution

global query

execution

.

26

Preliminary tests

Middleware

ql4
ql3
ql2
ql1
qg

Dataspace Query

rewriting

q

ql1 ql2 ql3

qg

query results local queries execution

global query

execution

.

MySQL 5.6

Cassandra 3.11MongoDB 3.4.0

27

Preliminary tests

Middleware

ql4
ql3
ql2
ql1
qg

Dataspace Query

rewriting

q

ql1 ql2 ql3

qg

query results local queries execution

global query

execution

.

SparkSQL Spark 2.2.0

MySQL 5.6

Cassandra 3.11MongoDB 3.4.0

28

Preliminary tests

oBenchmark based on Unibench extended with heterogeneity, 142K records

oHW: single server Intel I5 i5-4670 - 3.4 GHz - 4 cores - 16 GB of RAM

Middleware

ql4
ql3
ql2
ql1
qg

Dataspace Query

rewriting

q

ql1 ql2 ql3

qg

query results local queries execution

global query

execution

.

SparkSQL Spark 2.2.0

MySQL 5.6

Cassandra 3.11MongoDB 3.4.0

29

Preliminary tests

oBenchmark based on Unibench extended with heterogeneity, 142K records

oHW: single server Intel I5 i5-4670 - 3.4 GHz - 4 cores - 16 GB of RAM

oExecution of the running example query takes 6,9 secs

Middleware

ql4
ql3
ql2
ql1
qg

Dataspace Query

rewriting

q

ql1 ql2 ql3

qg

query results local queries execution

global query

execution

.

0,2
s

1,2s 2,7s 2,8 s

Plan generation Parallel Local query plans execution Data collection at Spark Global query plan execution

SparkSQL Spark 2.2.0

MySQL 5.6

Cassandra 3.11MongoDB 3.4.0

30

Future Works
Expressiveness

oCover horizontal partitioning of the data: the same information can span on several
collections and on different DBs.

oSupport additional data models (e.g., key-value and graph)

oEnable a broader set of queries than GPSJs

User-system interaction: introduce KPIs to provide further insights to the user with respect to
the underlying heterogeneity of the data

Complete prototype implementation

31

