A Hybrid Architecture for Tactical and Strategic Precision Agriculture

Enrico Gallinucci, Matteo Golfarelli, Stefano Rizzi

{enrico.gallinucci, matteo.golfarelli, stefano.rizzi} @ unibo.it

Introduction

The world of agriculture has become a major producer/consumer of data

Precision agriculture (PA): farming management based on a DSS

Scientific literature poorly addresses the definition of a comprehensive and integrated architecture for precision agriculture

- Free and commercial data services provide high-value data
 - E.g., irrigation advices, vegetation indices
- Mostly based on web applications to deliver data services
- Strongly differ in:
 - The way data are stored, processed, and made available
 - The type of data provided
 - The professional figures and services they are oriented to

Introduction

In this paper we propose an innovative architecture for handling agricultural data in an integrated fashion

- Oriented to data analysis and inspired by Business Intelligence (BI) 2.0
- Hybrid: couples traditional and big data technologies
 - Integrate heterogeneous data, at different levels of detail, from owned and open sources

Enables different levels of tactical and strategic services

- Tactical: detailed information from a limited area within a restricted time-span
- Strategic: aggregated data from broader areas spanning on long time intervals
- Separated repositories and schemata are required
- Geo-referencing exploited as the basis for painless integration

Related work

Most efforts focused on applying ML to ad-hoc agricultural datasets

Marginal focus on data management architecture and platform's features

Chen et al. (2015)

- Focus on data collection and tactical level
- No strategic level/OLAP functionalities
- No validation on big data

Free/commercial web-services

- Global Land Cover, CropScape, Mundialis, Moses, Earth Observation Data Services
- No OLAP-like functionalities

The project

Architecture developed in the context of the Mo.Re.Farming project

- Provide a Decision Support System for agricultural technicians in the Emilia-Romagna region (Italy)
- Enable analyses related to the use of water and chemical resources
 - In terms of optimization and environmental impact

Our goal: verify the feasibility of a data integration approach

- Deliver precision agriculture services to a plethora of different stakeholders
- The more effectively integrated data sources,
 the more delivered services and supported stakeholder

Data sources

Satellite images

- Source: ESA (European Space Agency)
- Taken from Sentinel-2 satellites
- Each image is a granule in USA's National Grid
 - www.fgdc.gov/usng
 - About 1GB each
 - Emilia-Romagna region covered by 7 granules
- Designed to support vegetation, land cover, and environmental monitoring
- Provided in the L-1C format
 - Affected by solar light's reflection against atmosphere
- 3 satellite passages per week

Data sources

Field sensors

- Humidity sensor
 - Uses a waveguide faced to the soil surface
 - One value per hour
- Smart pheromone trap
 - Insects captured through an adhesive strip with pheromones
 - Smart camera counts and classifies insects every day

Data sources

Weather data

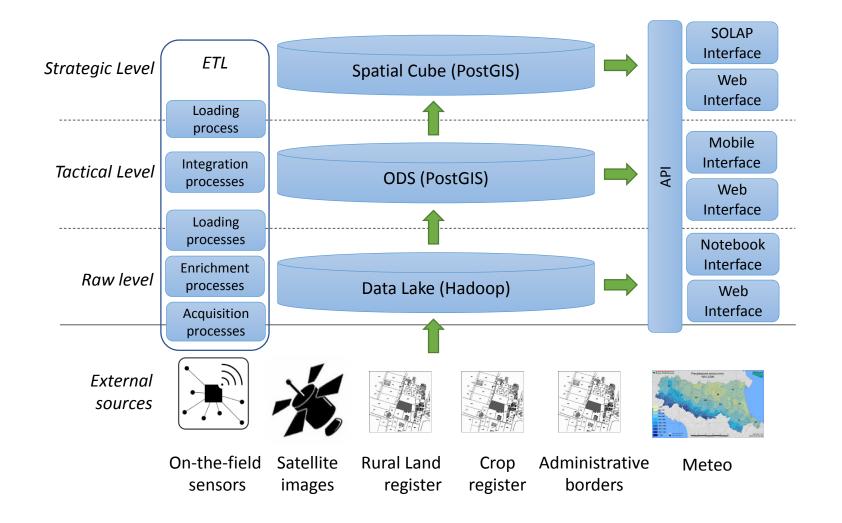
- Source: ARPAE (Regional agency for climate monitoring)
- Temperature and rainfall data from 858 sensors in Emilia-Romagna
- Updated daily

Crop & Rural land registers

- Sources: AGREA, CER (Regional agencies for agriculture)
- Vector layer with field's surfaces and classifications
- Updated yearly

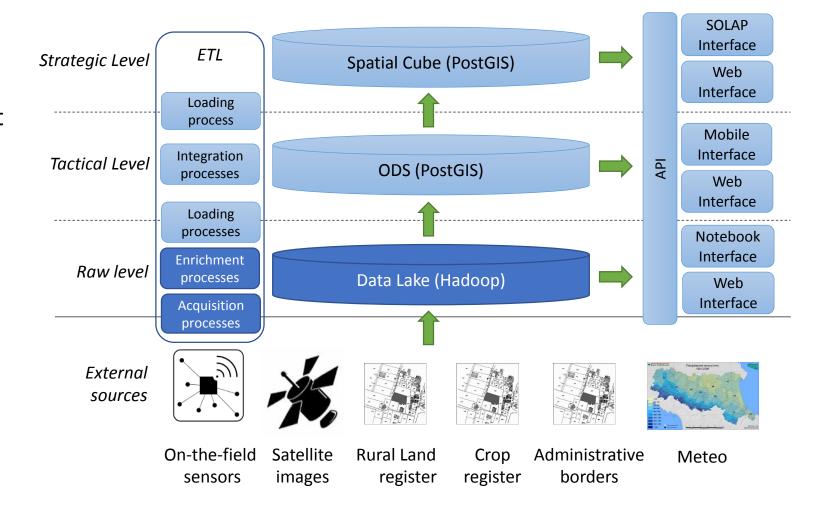
Administrative boundaries

- Source: ISTAT (National institute of statistics)
- Vector layer municipal, provincial, and regional boundaries

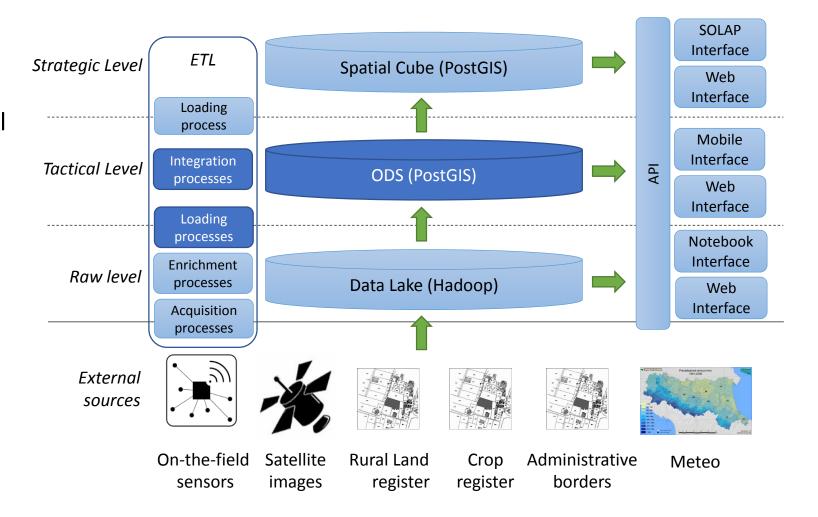

A closer look

The architecture

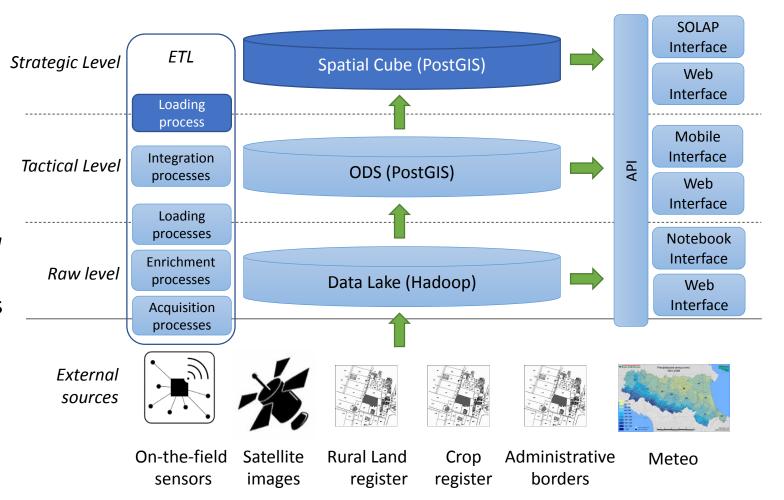
• From the data lake to the spatial cube


Data processing

Acquisition, enrichment, integration and loading

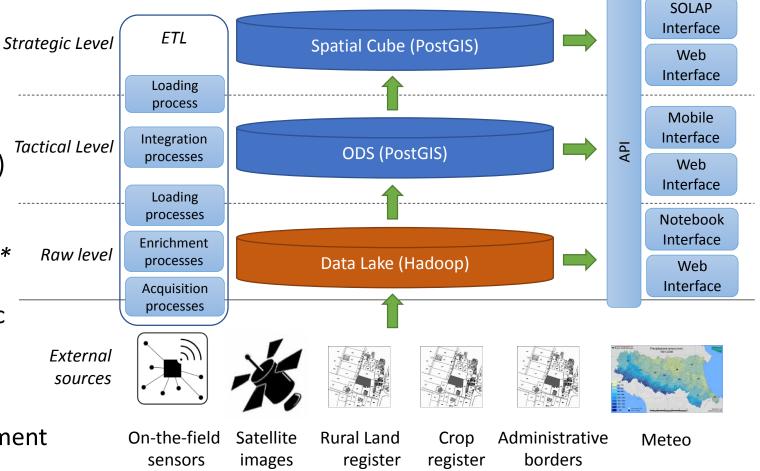

Data lake

- Holds a vast amount of raw data in native format
- Adopts a multi-zone architecture
- No fixed schema


Operational Data Store

- Stores structured data at the finest level of detail
- In-depth analysis and monitoring
- Schema defined at design time

Spatial cube

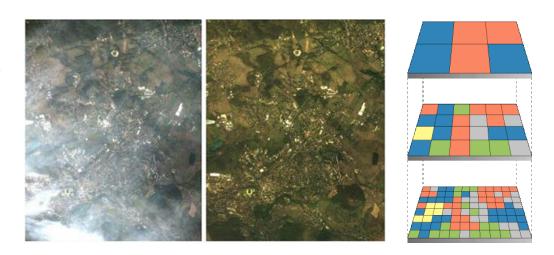

- Data stored in a multidimensional fashion
- Enables SOLAP (Spatial On-Line Analytical Processing)
- Spatial slice and spatial drill operators allow for aggregating measure values

Hybrid architecture

 Data lake is Hadoop-based, upper levels rely on centralized PostGIS DBMSs

- Satellite images (i.e., rasters) need to be handled at the pixel level
- Analysis of continuous fields*
 requires map algebra
 manipulations, i.e., algebraic
 operations on rasters (e.g.,
 arithmetical, trigonometric)
- No Big Data GIS available at the time of project development

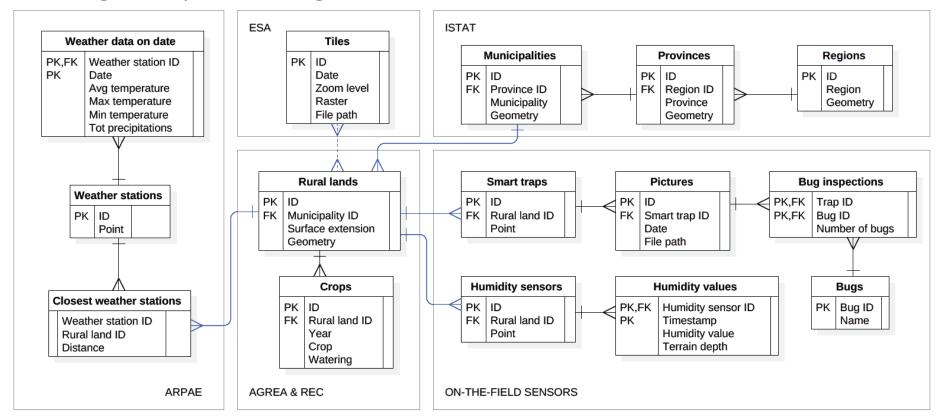
^{*} Spatial phenomena that are perceived as having a value at each point in space and/or time


Data acquisition and enrichment

HDFS ensures system robustness and enables parallel processing

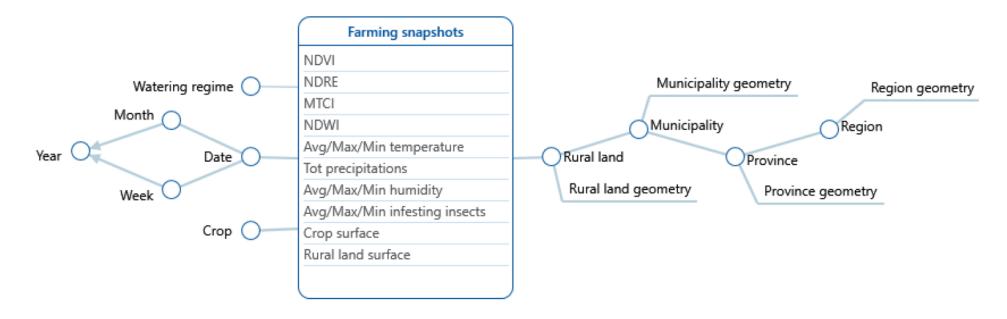
• 11-node cluster (4-core CPU, 32GB RAM, 6TB disk)

Satellite image acquisition and enrichment parallelized as bag-of-task:


- Download through ESA's web services
- Atmospheric correction
 - Cleans solar lights' reflection on atmosphere
- Merging granules into a single GeoTIFF
- Raster pyramid creation
 - Enable visualization through a web interface
 - Split into tiles at several resolution levels
- Sequential ETL for other sources

Data integration

The central role is played by the Rural lands


Enabling the spatial integration of the different data sources

Data loading

Multidimensional schema obtained with a data-driven approach

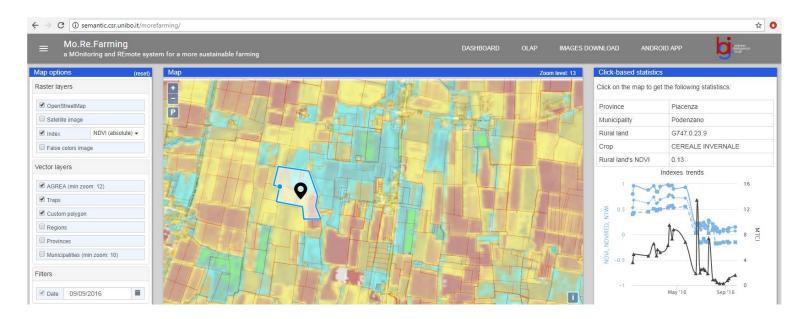
- Validated by experts in the field of agricolture
- Events consist of snapshots, one for each satellite image
- Provide statistics for the crop of a given rural land in a given date

Performance

Spatial cube loading is the most expensive

- Due to spatial integration of rural land vectors and tile rasters to compute the vegetation indices
- Loading is incremental

Variations due to

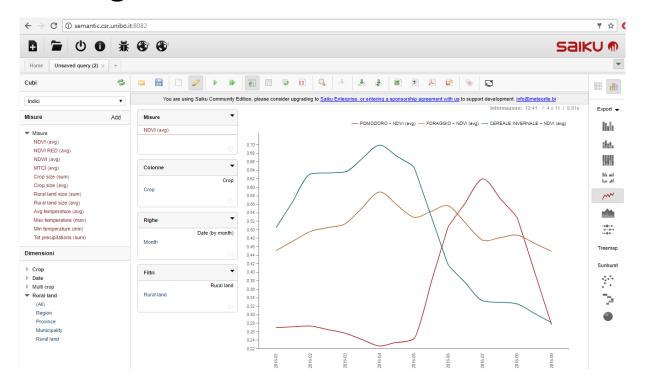

- Image size
- Number of granules per image (from 1 to 7)

Process	Execution time	Granularity
Satellite image acquisition	2-5 minutes	Per granule
Atmospheric correction	25-40 minutes	Per granule
GeoTIFF creation	10-40 minutes	Per image
Pyramid creation	5-15 minutes	Per image
ODS loading	15-20 minutes	Per image
Spatial cube loading	3-8 hours	Per image

Tactical level interface

Ad-hoc dashboard: http://semantic.csr.unibo.it/morefarming

- Obtain statistics about a point, field, or custom area
- Locate smart sensors and visualize the generated data
- Also available as a mobile application



Strategic level interface

SOLAP solution implemented through Saiku

 Polygon drawn on the map used as a spatial filter in the query

20

Standard RESTful APIs: http://semantic.csr.unibo.it/morefarming/api

Conclusions

Technical considerations

- Computational needs and data quantities push towards big data solutions
 - The level of development of tools with spatio-temporal features is still limited
- Carrying out integration at the physical level has both pros and cons
 - + Late data reworking
 - + 360-degrees exploitation of data with no limitations due to different data owners
 - + Possibility of efficiently running complex analytics on heterogeneous data
 - - Integration tasks are computationally demanding; hard to be carried out on-the-fly
 - Higher costs for storing and handling data
- New data sources and data collection approaches in the coming future
 - Farmsourcing: crowdsourcing applied to agriculture through IoT machinery and sensors

Conclusions

Domain-related considerations

- Creating integrated hubs of information is mandatory to deliver more effective information and services
 - Several solutions, models and services for PA
 - Work on a subset of the available data, providing complementary non-integrated info
- PA should be as open as possible to enable complementary data exchange and fruition
 - Need for a standard and machine-readable terminology
- Stakeholders have different skills, culture, and mindset
 - Technicians/managers favorably perceive a data-driven agriculture; most farmers do not
 - Overcome reluctance with easy-to-use analytics and killer applications
 - Mo.Re.Farming mobile interface strongly appreciated by in-field users

Up next: Agro.Big.Data.Science

New project to complete the picture

- Moving the platform to a full Big Data infrastructure
 - Exploit new software tool for continuous field analysis (i.e., GeoTrellis)
- Mobile application for remote feedback by farmers
 - Designed in collaboration with technicians
 - To be coupled with on-field sensor data
- A more intelligent platform
 - Smart data lake for automatic metadata extraction and lineage tracking
 - General-purpose visualization of geo-located data
- Decision support
 - Actively support the decision-making process beyond the mere integration of data

Thank you

Questions?

