
Query Processing on Cubes Mapped from
Ontologies to Dimension Hierarchies	

Carlos Garcia-Alvarado
Greenplum EMC

USA

Carlos Ordonez
 University of Houston

USA

Scenario

2	

Document	

Dimension	
 Measurements	

Explore	

Digital	
 Library	

Dimension Hierarchies

3	

Problem

Efficient summarization of text corpora mapped
from ontologies to dimension hierarchies.

OLAP Cube is an excellent candidate to
represent concept hierarchies and perform
efficient aggregations on multiple combinations.

Previous work required star schema or cubes on
demand with all concepts [1][2][3].

4	

Definitions

•  Let a collection C, or corpus, of n documents.
•  Each document has {D1, D2, …,Dk} dimensions.
•  Each document has a measurements {A1, A2,…,Ae}
•  Fact table is in vertical format: F(i,Dj,A1,...,Ae)
•  An ontology O is mapped to a dimension hierarchy as a tree-like structure.
•  A query Q is a subset of dimensions from F which builds an OLAP cube.

5	

Figure 1: Data cube Q and Fact Table F based on The ACM Computing Classification System (1998) with

{D1 =Parallel processors, D2 =Array and vector processors, D3=Distributed databases}.

the resulting summarization can be seen as a smaller data
cube. This research formalizes and introduces algorithms
for processing text data that have not previously been pro-
posed, where summarization and hierarchies are not taken
into consideration. The resulting algorithm and data struc-
ture are a compact and efficient tool adapted to a database
management systems (DBMS) tailored for the sparse nature
of text corpora.

This paper is organized as follows: Section 2 presents the
notation used throughout this paper. Even though this pa-
per deals with ontologies, the entire notation is focused on
the OLAP common notation for mapping ontologies to di-
mension hierarchies. In addition to this, the main concepts
of ontologies and OLAP are described. Section 3 shows
our novel algorithm for building CUBO using ontologies.
Also, we present a complexity analysis of how the complex-
ity changes from a traditional OLAP data cube. In Section
4, the performance evaluation and scalability experiments
on two collections are presented. Section 5, discusses closely
related work. Finally, in Section 6, we make our final re-
marks and discuss future work.

2. DEFINITIONS

Let us focus on defining the required OLAP and ontol-
ogy notation that will be used to obtain a dimension hier-
archy. Due to the interdisciplinary nature of this research,
we propose a combination of data cubes and information
retrieval definitions. Let a collection, or corpus, of n doc-
uments, where each document ti is composed of a set of
dimensions {D1, D2, . . . Dj , . . . , Dk}, where k is the num-
ber of the dimensions required for building the data cube.
Examples of dimensions in a corpus are the topics “Parallel
Processor” or “Distributed Database”. Moreover, let every
set of dimensions in a document be accompanied by a set of
attributes {A1, A2, . . . , Am, . . . , Ae}, where e represents the
total number of attributes and Am is a specific attribute (e.g.
minimum common frequency of a set of attributes). More-
over, let the collection be stored in a relational table inside
a DBMS. Thus, F is a table defined as a vertical fact table
F (i,Dj , A1, . . . , Ae) of size e+2 by

�n
i=1 |ti|, where i repre-

sents the document number, Dj is a dimension, and Am is a
summarization attribute. A1 to Ae are constant within ev-
ery Dj of a document to avoid generating a much larger fact
table. Notice that F differs from a traditional fact table for

OLAP, because the dimensions are not represented in a hor-
izontal manner and all the attributes are replicated within
every Dj . This is due to the sparse nature of text data and
the limitation of the number of columns that is present in a
traditional row store DBMS. Additionally, if the attributes
are not considered to be constant within the same document,
additional processing within a document must be performed
to obtain a unique aggregation measurement. The backbone
for OLAP data cubes is the dimensional lattice, which has
a size of 2k combinations for a set of dimensions, where k is
the number of dimensions. Furthermore, a user-query Q is
a subset of dimensions from F which builds an OLAP data
cube for every level in a given dimension hierarchy repre-
sented by the l subscript.

H0

H(1,1)

H(2,1)

...

H(h−2,1)

D1

H(1,2)

...

. . . H1,k1

H2,k2

...

H(h−2,kh−2)

Dk

Figure 2: Ontology.

An ontology O, on the other hand, is mapped to a dimen-
sion hierarchy as a tree-like structure where the nodes rep-
resent dimensions and the branches model the relationships
between them. In Figure 2, the k leaf nodes Dj represent
the ground level dimensions and Hh−2 to H0 represent the
parent dimensions, where h is the depth or height of the on-
tology. In addition, the number of dimensions per level kl
is always less than or equal to the following k(l+1). Lastly,
we will consider an ontology to have an overall H0 root class
(e.g “thing”), and every dimension to have only a single par-
ent (except for the root that has none). In relational terms,
every concept reference between levels (e.g. Dj and Hh−2)
can be seen as a dimension table. However, in this approach,
the entire data structure is kept in main memory (to be de-

Figure 3: Ontology Example.

tailed in sections to follow) as a tree during the execution of
the algorithm.

2.1 Ontologies

Ontologies embody formal representations of knowledge.
As such, several language proposals have been used to write
explicit formal conceptualizations of domain models [1]. These
proposals include the popular RDF/RDFS, as well as some
other representations such as DAML +OIL and OWL lan-
guages, among many others. RDF/RDFS allows some basic
knowledge representation. Despite this, features such as the
local scope of properties, the disjointness of classes, Boolean
combinations of classes, cardinality restrictions and special
characteristics or properties are left out of this language [1].
In order to model more complex relations between classes,
DAML+OIL took an object oriented approach [10]. Finally,
OWL was developed to standardize all the previous language
approaches in a more robust knowledge representation.

Regardless of the ontology language, all these knowledge
representations rely on the specification of the main concepts
in a given context. The representation of every concept is
defined as a class with a set of properties and interactions
between the classes, subclasses, and their properties. A class
(e.g. owl:Class) is a classification of individuals that share
common characteristics. This class classification is obtained
through a taxonomy (hierarchy). In this work, CUBO is not
tied to a specific language, but on the classes (dimensions)
and their relationships. An example of a class taxonomy is
given in Figure 3, in which the ontology used for the data
cube example is shown. The first level corresponds to con-
cepts D1 =Parallel processors, D2 =Array and vector pro-
cessors, D3=Distributed databases; the second level to con-
cepts H(1,1) =Parallel processors and H(1,2) =Distributed
systems; and the root level (H0) is for the Computer Sci-
ence concept. Each node in the taxonomy is a class, and
the branches in the tree indicate a type of relationship (e.g.
subClassOf). The instances represented in the leaf classes
are specific to a particular class (which may or may not be
considered as part of the data cube).

2.2 OLAP

OLAP techniques are generally used to quickly process
complex queries involving multiple aggregations [9]. While
traditional applications of OLAP include summarizations in
the form of business reports and financial analysis of large
data sets [4], we believe that the OLAP dimensional lattice
can be used to efficiently summarize classes and their rela-
tions present within a corpus. The main benefit of OLAP
is the ability to analyze large amounts of data at various
levels of aggregation to obtain additional information. In
this case, the dimensions are represented by the collection
of classes, the attributes are measurements relating a docu-

Figure 4: Hierarchies.

ment and a class, while the level of aggregations (ontology)
allows us to obtain various combinations of the parents of
the leaf dimensions.
Traditional OLAP accepts inputs that are horizontal, which

means that each row contains all dimensions used in the
analysis. However, in our system, the fact table has a verti-
cal layout, which translates into each row containing a sin-
gle dimension. This presents a challenge for our algorithm
because we are unable to use normal techniques, such as
slicing, with the vertical layout. Despite this, we are only
analyzing a small subset (the subset of dimensions in Q)
of all dimensions in the corpus. It is nevertheless time con-
suming to pivot the dimension into a horizontal layout. This
is especially costly when the number of documents is large
and the dimensions are sparse. As a result, we developed an
algorithm that can obtain the necessary aggregations and
perform the required auxiliary computations by taking only
the desired dimensions. Likewise, the entire data cube for all
existing combinations is computed with no minimum thresh-
old required.
OLAP data cubes are able to capture hierarchies in the

data. These hierarchies can be described as flat, balanced,
or unbalanced (see Figure 4). The most basic type of hierar-
chy is the flat one, which is the one that we captured in our
early works where only the leaf nodes are present. A second
type of hierarchies is the balanced ones, where all the nodes
are present for every level of the tree. Finally, unbalanced
hierarchies are those that do not have nodes in every level
of the hierarchy. All these types of hierarchies are able to be
represented in an OLAP data cube. However, unbalanced
hierarchies require additional information in the ontology,
such as providing a hierarchy level for each class as a prop-
erty. Despite these advantages for managing hierarchies, it
is not possible to model every hierarchy variant, such as a
node with multiple parents. They cannot be represented in
a transparent manner. In this case, a separate hierarchy is
needed to model every parent-child relation.

3. CUBO

CUBO is an array of data cubes that contain only the
existing dimensions within the fact table F given Q. How-
ever, the notion of CUBO is based on the premise that a set
of documents does not contain all the dimensions in every
document. Thus, only a set of “on-demand” computations
of the dimensions are required for every document. More-
over, our algorithm takes advantage of this property when
computing the aggregation on superior levels in the hierar-
chy. In other words, CUBO has a lazy policy that waits to
perform the computations until it is absolutely necessary.
Furthermore, the algorithm avoids redundant computations
by focusing only on storing those dimensions that contain
attributes to aggregate. If the entire data cube is desired,

CUBO: CUBed Ontologies

6	

•  Take	
 advantage	
 of	
 sparse	
 frequency	
 matrix.	

•  Perform	
 single	
 pass	
 through	
 the	
 data.	

•  Store	
 the	
 result	
 in	
 a	
 Hash-­‐table.	

•  Load	
 the	
 Ontology	
 in	
 main	
 memory	
 for	

summarizaEon	
 by	
 level.	

Fact Table Computation

7	

Algorithm 1: CUBO

Input: O,F ,Q,T ,{A1, . . . }
Output: R
/* Init CUBO struct */

1 R ← ∅;
/* Load ontology in main memory. */

2 O ← LoadOntologyFromOWL();
/* Filter F to consider only those Dj in Q */

3 F̂ ← {ti|ti ∈ F ∧ ∃Dj s.t.Dj ∈ ti ∧Dj ∈ Q} ;
/* Single data set scan. */

4 t ← ∅;

5 while row in F̂ do

6 if document changed then

/* Add document to CUBO */

7 R ← R ∪ BuildCube(t,O,T,R,{A1, . . . });
8 end

/* Dj ∈ row. */

9 t ← t ∪ {Dj};
10 end

/* Add last document to CUBO */

11 BuildCube(t,O,T,R,{A1, . . . });

through a single scan over the filtered data set. CUBO is
composed of three major steps: load ontology, computa-
tion of on-demand combinations and the data cube aggre-
gation. The final step of our algorithm stores the resulting
data cubes into a relational table. Example 2: for an on-
tology with h = 3, d3 = 2, d2 = 1, and given that all
the dimensions share parent H(1,1). The resulting CUBO is
{{{D1, D2}, {D1}, {D2}}, {{H(1,1)}}, {{H0}}}.

3.1 Load Ontology

Loading the ontology in main memory is the initial step
for our algorithm. The format of the ontology is language-
specific (in our case we use OWL). However, our algorithm
builds a balanced internal tree-like representation of the
given ontology (every leaf node has a parent pointer). Due to
the fact that we are only interested in capturing class and
relationships, all the properties and types of relationships
are ignored in this process. Ontologies that are equivalent
to flat or balanced hierarchies are easy to capture and tra-
verse. By counting the number of parents, it is possible to
know the level. However, an unbalanced ontology must be
captured in a tree representation that preserves the level for
each node in the tree. Otherwise, the algorithm will return
incorrect results by pairing dimensions that are not within
the same level. In order to avoid this problem, dummy nodes
must be included in the tree data structure, and must be ig-
nored during the combination computation and aggregation.
For example, if a dimension D1 does not have a parent in
the immediate superior level h − 2, in which dimension D2

has parent H(h−2,1), a dummy parent node must be added
for D1 in order to allow our algorithm to traverse the tree
all the way to the root. As a result, if the user desires to
support unbalanced ontologies, the given ontology should
have a way to provide a property that specifies the level of
a dimension in the tree. In this algorithm, hierarchies with
multiple parents are not covered, but it is possible to extend
our algorithm to handle such cases. Extensions to our al-

gorithm also include adding a new indirection level in the
h− 1 level of the R structure to manage the summarization
of instances.

3.2 On-demand Combinations

The lazy-policy of only working with those combinations
that are present in the data set is critical for efficient per-
formance in a space data set. Once the ontology has been
loaded into main memory, the fact table F is filtered to
only focus on those dimensions that are in Q. A single scan
through the data set is performed to read all the entries
containing a document ti and a dimension Dj . In order to
process a document ti, all the dimensions must be collected
before proceeding. With all the dimensions of a document
collected, our algorithm computes the combinations possi-
ble with this set of dimensions and stores them in a list
for accumulating all the desired measurements. The incom-
ing attributes are always sorted in order to guarantee that
the combination will be unique when storing the resulting
combination in R. The sorting, as well as the combination
computations, are relatively inexpensive operations due to
the limited amount of dimensions to consider per document.
However, if the data set is dense, these tasks will represent
the bottleneck of the algorithm.

3.3 Data Cube Aggregation

The data cube aggregation will cover storing every combo
in the corresponding data cube (level) and traversing the
loaded hierarchy all the way to the root H0. This function
is covered in the BuildCube function shown in Algorithm 2.
The BuildCube algorithm takes the result of the on-demand

combinations of each document and stores the result in main
memory. Then, it will traverse for every dimension Dj in ti
the ontology tree. The corresponding combinations are ac-
cumulated in R, in which if a corresponding combo does not
exist, a new entry will be created. Otherwise, the corre-
sponding measurements are aggregated. For each Dj that
exists in each document, all the superior H are extracted,
and their combinations are computed and stored in s0,...,h−2.
Finally, the corresponding value is accumulated for each ex-
isting combination in every level. The CombosForOntolo-

gyLevel function is a recursive function that will stop after
a certain number of levels T has been reached, or the parent
is null. Due to the fact that we always consider balanced
trees, it is possible to perform this operation in a simple
manner. Support for dummy nodes should be considered in
this section of the algorithm.
Once the resulting data cube R is computed, R can be

stored as relational tables inside a database management
system.

3.4 Complexity

The complexity of our algorithm is given by the time it
takes to compute all the combinations of the dimensions
for each document n2k. Moreover, because our ontology
representation is always the result of balanced hierarchies
(remember the introduction of dummy nodes), the time it
takes to traverse an entire branch of the tree for each di-
mension requires h steps. Thus, the total complexity of our
algorithm is O(n2kh). Despite the time complexity of our
algorithm being larger than the traditional data cube com-
putation that has a complexity of hn2k (because there is a
need to compute a data cube for every level), in practice,

Build Cube per Document

Algorithm 2: BuildCube

Input: t,O,T ,R,{A1, . . . }

Output: R
sh ← Combos();
/* Aggregate all the existing combos of the h-1

level. */

foreach combo do
R ← R ∪ {1, combo, {A1, . . . }};

end
/* Recursive function to extract all unique

concepts by level h-2 to 0. */

s0,...,h−2 ← CombosForOntologyLevel(s,O,T);
/* Increments found combos by level. */

foreach l in s0,...,h−2 do
foreach combo in sl do

R ← R ∪ {l, combo, {A1, . . . }};
end

end
return R;

need to compute a data cube for every level), in practice,
the average size of k per document is small (around 1 or 2)
and h is almost always small (less than 5). This results in a
faster performance because there is no need to concentrate
on computing dimensions that are not within the data set.

The space complexity of our algorithm is limited only by
the number of dimensions per level in h. If the data set
is dense, the space required by our algorithm is given by�h

l=0 2
kl , where kl is the number of dimensions per level.

Therefore, in the worst case scenario, the space complexity
of our algorithm is of the order O(2k).

3.5 Integration with a DBMS
We assume that the fact table F and the filtered table are

cluster indexed by i. This is an important assumption for
guaranteeing that all the dimensions of a document are con-
tiguous in one block. Extending a relational database man-
agement system to support our algorithm requires injecting
our algorithm as a routine programmed in a procedural lan-
guage (e.g. C or C#). In order to do so, database extensibil-
ity mechanisms (e.g stored procedures or table-valued func-
tions) can be used to achieve this goal. The main advantage
of using an extensibility mechanism is that it is possible
to maintain the ontology, as well as the CUBO structure,
in main memory. They provide a framework to hold data
structures in main memory while scanning a data set in a
cursor fashion. Unlike other types of user-defined functions,
such as user-defined aggregates (UDAs), a stored procedure
or table-valued function that requires processing every row
will not offer the parallelism that is native to UDAs by de-
fault. In Figure 5, we show a stored procedure call to execute
the CUBO algorithm in a DBMS.

EXEC CUBO ’D:\ontology.owl’, ’dataset’,’D1,D2,D3’

Figure 5: Stored Procedure SQL Call.

The extensibility mechanism contains a SELECT state-
ment that filters the fact table F using a WHERE/IN clause
to consider only those dimensions in Q. This will be the
only pass through the data set. Notice that this query is

Table 1: TPCH Corpora.
n Avg k Max k Min k Total k

1K 1 3 1 1038
10K 1 3 1 6589

100K 1 5 1 9702
1M 1 5 1 9702

10M 1 5 1 9702

Table 2: dbpedia Corpora.
n Avg k Max k Min k Total k

1K 2 9 1 156
10K 2 14 1 231

100K 2 16 1 263
1M 2 26 1 302

10M 2 46 1 308

represented as two steps in the algorithm. The backbone
data structure R that contains all the aggregated attributes
A1, . . . , Ae for all the levels in the hierarchy is an array list
of hash tables, where each hash table contains a data cube.
Unfortunately, there are limitations associated with every

relational database management system (which limits the
portability of a stored procedure or user-defined function
implementation). For example, the amount of data that can
be maintained in main memory at a time, the ability to
access and read external files (used to load the ontology),
or the possibility to create and store the resulting data in a
relational table.

Table 3: Performance of Traditional Cube and
CUBO (* unable to compute)

d Traditional Single Level CUBO
2 36 5
4 36 8
8 37 9

16 * 15
32 * 44
64 * 96

4. EXPERIMENTS
To verify that our algorithm performs better than a tra-

ditional approach, as well as to scale to large datasets and
dimensions, we tested our algorithm on two databases. Our
experiments were run on an Intel Xeon E3110 server at 3.00
GHz with a 750 GB in hard drive and 4 GB of RAM. The
server was running an instance of SQL SERVER 2005. The
application was developed entirely as a stored procedure
in C#, as part of an extensibility mechanism from SQL
SERVER 2005.
The databases that we used for testing our application

included an ontology in OWL format and a real and a syn-
thetic data set stored in a relational table F . The synthetic
data set is a materialized view from the TPCH data set.
The view is the result of Lineitem �� Part, where each row
represents a dimension in a document (in fact, a document

8	

Example

9	

Q={Parallel	
 processors,	
 Array	
 and	
 vector	
 processors,	
 Distributed	
 databases}	

…	

3,	
 Array	
 and	
 Vector	
 Processors,	
 50	

3,	
 Distributed	
 databases,	
 50	

3,	
 Parallel	
 Processors,	
 50	

A1	
 =	
 50	

	

Hh-­‐1	

{Array	
 and	
 Vector	
 Processors,	
 Distributed	
 databases}	
 	

{Distributed	
 databases,	
 Parallel	
 Processors}	

{Array	
 and	
 Vector	
 Processors,	
 Parallel	
 Processors}	

Hh-­‐2	

{Parallel	
 Processors,	
 Distributed	
 Systems}	

H0	

{Computer	
 Science}	

	

50	

50	

50	

50	

50	

Hash	
 Table	
 Hh-­‐1	

Hash	
 Table	
 Hh-­‐2	

Hash	
 Table	
 H0	
 Level	
 0	

Level	
 1	

Level	
 2	

Fa
ct
	
 T
ab
le
	

Cu
be

	
 p
er
	
 D
oc
um

en
t	

Time Complexity

•  Traditional data cube computation O(nh2k)

•  The average number of k and h is small.

•  Our algorithm has a worst time complexity of

 O(n2kh), but on average performs less computations.

10	

Experiments in a DBMS

•  CUBO	
 is	
 a	
 User-­‐Defined	
 FuncEon	
 in	
 C#.	

•  Our	
 experiments	
 were	
 run	
 on:	

–  Intel	
 Xeon	
 Dual	
 Core	
 @3.00	
 GHz	

– 1	
 TB	
 Hard	
 drive	

– 4	
 GB	
 RAM	

– SQL	
 SERVER	
 2005	

11	

Data Sets

12	

Algorithm 2: BuildCube

Input: t,O,T ,R,{A1, . . . }

Output: R
sh ← Combos();
/* Aggregate all the existing combos of the h-1

level. */

foreach combo do
R ← R ∪ {1, combo, {A1, . . . }};

end
/* Recursive function to extract all unique

concepts by level h-2 to 0. */

s0,...,h−2 ← CombosForOntologyLevel(s,O,T);
/* Increments found combos by level. */

foreach l in s0,...,h−2 do
foreach combo in sl do

R ← R ∪ {l, combo, {A1, . . . }};
end

end
return R;

need to compute a data cube for every level), in practice,
the average size of k per document is small (around 1 or 2)
and h is almost always small (less than 5). This results in a
faster performance because there is no need to concentrate
on computing dimensions that are not within the data set.

The space complexity of our algorithm is limited only by
the number of dimensions per level in h. If the data set
is dense, the space required by our algorithm is given by�h

l=0 2
kl , where kl is the number of dimensions per level.

Therefore, in the worst case scenario, the space complexity
of our algorithm is of the order O(2k).

3.5 Integration with a DBMS
We assume that the fact table F and the filtered table are

cluster indexed by i. This is an important assumption for
guaranteeing that all the dimensions of a document are con-
tiguous in one block. Extending a relational database man-
agement system to support our algorithm requires injecting
our algorithm as a routine programmed in a procedural lan-
guage (e.g. C or C#). In order to do so, database extensibil-
ity mechanisms (e.g stored procedures or table-valued func-
tions) can be used to achieve this goal. The main advantage
of using an extensibility mechanism is that it is possible
to maintain the ontology, as well as the CUBO structure,
in main memory. They provide a framework to hold data
structures in main memory while scanning a data set in a
cursor fashion. Unlike other types of user-defined functions,
such as user-defined aggregates (UDAs), a stored procedure
or table-valued function that requires processing every row
will not offer the parallelism that is native to UDAs by de-
fault. In Figure 5, we show a stored procedure call to execute
the CUBO algorithm in a DBMS.

EXEC CUBO ’D:\ontology.owl’, ’dataset’,’D1,D2,D3’

Figure 5: Stored Procedure SQL Call.

The extensibility mechanism contains a SELECT state-
ment that filters the fact table F using a WHERE/IN clause
to consider only those dimensions in Q. This will be the
only pass through the data set. Notice that this query is

Table 1: TPCH Corpora.
n Max kj Min kj Total k

1K 3 1 1038
10K 3 1 6589

100K 5 1 9702
1M 5 1 9702

10M 5 1 9702

Table 2: dbpedia Corpora.
n Max kj Min kj Total k

1K 9 1 156
10K 14 1 231

100K 16 1 263
1M 26 1 302

10M 46 1 308

represented as two steps in the algorithm. The backbone
data structure R that contains all the aggregated attributes
A1, . . . , Ae for all the levels in the hierarchy is an array list
of hash tables, where each hash table contains a data cube.
Unfortunately, there are limitations associated with every

relational database management system (which limits the
portability of a stored procedure or user-defined function
implementation). For example, the amount of data that can
be maintained in main memory at a time, the ability to
access and read external files (used to load the ontology),
or the possibility to create and store the resulting data in a
relational table.

Table 3: Performance of Traditional Cube and
CUBO (* unable to compute)

d Traditional Single Level CUBO
2 36 5
4 36 8
8 37 9

16 * 15
32 * 44
64 * 96

4. EXPERIMENTS
To verify that our algorithm performs better than a tra-

ditional approach, as well as to scale to large datasets and
dimensions, we tested our algorithm on two databases. Our
experiments were run on an Intel Xeon E3110 server at 3.00
GHz with a 750 GB in hard drive and 4 GB of RAM. The
server was running an instance of SQL SERVER 2005. The
application was developed entirely as a stored procedure
in C#, as part of an extensibility mechanism from SQL
SERVER 2005.
The databases that we used for testing our application

included an ontology in OWL format and a real and a syn-
thetic data set stored in a relational table F . The synthetic
data set is a materialized view from the TPCH data set.
The view is the result of Lineitem �� Part, where each row
represents a dimension in a document (in fact, a document

Experiments

13	

Table 2: dbpedia Corpora.

n Avg k Max k Min k Total k
1K 2 9 1 156

10K 2 14 1 231
100K 2 16 1 263
1M 2 26 1 302

10M 2 46 1 308

fied to have the classes as column names and the documents
as rows. Hence, the experiments were set to use this horizon-
tal layout for the traditional cube operator and the vertical
layout was used for CUBO. In addition, the traditional cube
was only performed in the lowest hierarchical level due to the
lack of native support for hierarchies. Obtaining a similar
result with the cube (or sql queries) will require loading the
ontology in a star schema that should be known upfront, and
then running the cube operator several times for every level.
The results, presented in Table 3, show that our algorithm
performs an order of magnitude better than the traditional
data cube operator in only the lowest level of the hierarchy
(level h − 1). Moreover, the traditional data cube operator
cannot scale to a larger number of dimensions to compute.
This is due to the fact that the traditional data cube is
also computing those dimensions that have zeroes. We did
not perform this experiment in the TPCH data set because
this data set exceeds the maximum number of dimensions
allowed in a relational table.

Table 3: Performance of Traditional Cube and

CUBO (* unable to compute)

d Traditional Single Level CUBO
2 36 5
4 36 8
8 37 9

16 * 15
32 * 44
64 * 96

In Figure 6, we present scalability experiments by varying
the size of the corpus in the synthetic and real databases.
The size of Q was fixed to ten, and the corpora included
a range of collections from 1K to 10M of documents. The
experiments showed that CUBO scales linearly based on the
number of documents in the collection. However, the speed
of the increase is related to the average number of dimen-
sions per document. Therefore, a data set with a smaller
average of dimensions per document will be processed faster
than one with a larger average of dimensions.

Additional scalability experiments for our algorithm in-
clude modifying the number of dimensions in Q. In Figure
7, we show the results for the TPCH and dbpedia databases.
The results perform as expected in the complexity analysis
discussed in subsection 3.4. The plot shows an exponential
increase related to the average number of dimensions per
document. Hence, dbpedia has a larger exponential growth
than the TPCH data set. This is due to the larger average
number of sparse dimensions per document in dbpedia than
TPCH. A lower number of average dimensions per docu-

Figure 6: Varying Corpus Size.

Figure 7: Varying Number of Dimensions.

ment results in an avoidance to compute large combos and
a decrease in the exponential growth (shown in the TPCH
data set). The inflection point of the function is the result
of the selectivity of dimensions in the corpora, hence, this
point depends on each data set.
Experiments showing the space complexity of our algo-

rithm were also run. Figure 8 presents the results of this
experiment for both collections. Notice that the axes have
different scales due to the sparsity of the databases (TPCH
is more sparse). The dbpedia data set shows a clear expo-
nential growth of the data structure size. In a similar man-
ner, TPCH has a similar growth that is almost undetectable
due to the sparsity of the data set. We also found that
the maximum k that we were able to compute was around
100 dimensions and an ontology input file of around 2 MB.
However, this limitation is DBMS-specific.
Further experimental analysis of complexity of the algo-

rithm is shown in Tables 4 and 5. These tables show the per-
formance results of modifying the number of levels that are
taken into consideration from both ontologies and databases.
The results showed that in both databases, the overall im-
pact of modifying the level in the hierarchy is minimal when

Experiments

14	

Figure 8: CUBO Size when Varying Number of Di-
mensions.

Table 4: Varying Ontology Levels in dbpedia (time
in seconds).

n ALL MAX 2 MAX 1
1K 2 2 1

10K 2 3 1
100K 2 3 1
1M 7 6 5

10M 36 28 25

the average k is small in all the text collections. However,
there is an almost linear increase for the real data set in
the largest of the collections. It is then possible to observe
that our experimental results support our theoretical upper
bound of O(n2dh), in which there is an exponential growth.
Due to our lazy policy of only computing those dimensions
that are present, in practice, the complexity of the algorithm
is followed by an almost constant performance (e.g. there
are no combinations involving all the k dimensions).

Finally, a profiling analysis of our algorithm in both databases
is shown in Tables 6 and 7. The experiments are consistent
regardless of the data set and show that obtaining the com-
binations is the least expensive step, along with storing the
results in the hash table. However, reading and building the
ontology in main memory takes longer than building the ac-
tual CUBO. As expected, the majority of the processing is
spent in access to secondary storage.

5. RELATED WORK

Using OLAP for summarizing text corpora has been pre-
sented in several works [11, 12, 18]. Early in [11], the au-
thors presented an approach to load all the documents in-
side a DBMS. The documents were all loaded into a star
schema that allowed the users to use traditional OLAP al-
gorithms in this scenario. The computations were focused
on keyword frequency. The main disadvantage of this early
work is the requirement to load all the data in a predefined
schema that will allow exploring using traditional OLAP
techniques. This approach is prohibitive when we have a

Table 5: Varying Ontology Levels in TPCH (time in
seconds).

n ALL MAX 2 MAX 1
1K 2 2 2

10K 2 2 2
100K 2 2 2
1M 3 2 2

10M 7 7 7

Table 6: Profiling dbpedia (time in seconds).
Task Time Percentage
Load Ontology 0.017 0%
On-demand Combinations 0.030 1%
Data Cube Aggregation 0.061 1%
I/O 5.891 98%
Total 6.000 100%

data set with a large number of dimensions unlike our ver-
tical layout approach that allows storing large dimensional
data sets. In [12], the authors propose Text Cube. This
approach focuses on computing a partial cube by using only
a partial materialization. Their algorithms are focused on
obtaining “on-demand”OLAP queries with the optimal pro-
cessing cost using a greedy algorithm. Unlike our approach,
we focus on computing all the existing dimensions of the
data cube at once by taking advantage of the text sparcity.
More recently in [18], Topic Cube is proposed to obtain a
more complex analysis than just data summarization. The
purpose of this new OLAP model is to extract dimensions
for existing text data using the probabilistic latent semantic
analysis. Despite the fact that their model and results are
interesting for generating a possible ontology, the authors
do not to propose a new data structure for the multidimen-
sional data cube (they compute the sql queries as required),
and focus on the quality of the built hierarchy.
In [7] and [8], we were able to adapt a traditional OLAP

data cube to efficiently process a sparse vertical fact table.
However, we were only computing a set of dimensions, and
the scalability of the algorithm was limited to only a few
dimensions. In addition, the papers were focused on the
aggregation of several measurements inside text corpora to
produce the most frequent cuboids for generating an unsu-
pervised ontology. This ontology was the result of a post-
processing phase on the resulting cuboids. In this paper, we
assume a given ontology, and it is used to summarize a set
of documents. Thus, the main contributions of this research
focus on a new algorithm that integrates the hierarchy given
by an ontology into a single data structure called CUBO. In
addition, we formalize and study in depth, the theoretical
and experimental complexity of our algorithm. Finally, our
new algorithm considers a way to manage several types of
hierarchies that can be present in an ontology.

6. CONCLUSIONS

In this paper, we proposed a novel approach, CUBO, for
summarizing text corpora based on a given ontology using
OLAP data cubes. CUBO represents an efficient, compact,

Table 2: dbpedia Corpora.

n Avg k Max k Min k Total k
1K 2 9 1 156

10K 2 14 1 231
100K 2 16 1 263
1M 2 26 1 302

10M 2 46 1 308

fied to have the classes as column names and the documents
as rows. Hence, the experiments were set to use this horizon-
tal layout for the traditional cube operator and the vertical
layout was used for CUBO. In addition, the traditional cube
was only performed in the lowest hierarchical level due to the
lack of native support for hierarchies. Obtaining a similar
result with the cube (or sql queries) will require loading the
ontology in a star schema that should be known upfront, and
then running the cube operator several times for every level.
The results, presented in Table 3, show that our algorithm
performs an order of magnitude better than the traditional
data cube operator in only the lowest level of the hierarchy
(level h − 1). Moreover, the traditional data cube operator
cannot scale to a larger number of dimensions to compute.
This is due to the fact that the traditional data cube is
also computing those dimensions that have zeroes. We did
not perform this experiment in the TPCH data set because
this data set exceeds the maximum number of dimensions
allowed in a relational table.

Table 3: Performance of Traditional Cube and

CUBO (* unable to compute)

d Traditional Single Level CUBO
2 36 5
4 36 8
8 37 9

16 * 15
32 * 44
64 * 96

In Figure 6, we present scalability experiments by varying
the size of the corpus in the synthetic and real databases.
The size of Q was fixed to ten, and the corpora included
a range of collections from 1K to 10M of documents. The
experiments showed that CUBO scales linearly based on the
number of documents in the collection. However, the speed
of the increase is related to the average number of dimen-
sions per document. Therefore, a data set with a smaller
average of dimensions per document will be processed faster
than one with a larger average of dimensions.

Additional scalability experiments for our algorithm in-
clude modifying the number of dimensions in Q. In Figure
7, we show the results for the TPCH and dbpedia databases.
The results perform as expected in the complexity analysis
discussed in subsection 3.4. The plot shows an exponential
increase related to the average number of dimensions per
document. Hence, dbpedia has a larger exponential growth
than the TPCH data set. This is due to the larger average
number of sparse dimensions per document in dbpedia than
TPCH. A lower number of average dimensions per docu-

Figure 6: Varying Corpus Size.

Figure 7: Varying Number of Dimensions.

ment results in an avoidance to compute large combos and
a decrease in the exponential growth (shown in the TPCH
data set). The inflection point of the function is the result
of the selectivity of dimensions in the corpora, hence, this
point depends on each data set.

Experiments showing the space complexity of our algo-
rithm were also run. Figure 8 presents the results of this
experiment for both collections. Notice that the axes have
different scales due to the sparsity of the databases (TPCH
is more sparse). The dbpedia data set shows a clear expo-
nential growth of the data structure size. In a similar man-
ner, TPCH has a similar growth that is almost undetectable
due to the sparsity of the data set. We also found that
the maximum k that we were able to compute was around
100 dimensions and an ontology input file of around 2 MB.
However, this limitation is DBMS-specific.

Further experimental analysis of complexity of the algo-
rithm is shown in Tables 4 and 5. These tables show the per-
formance results of modifying the number of levels that are
taken into consideration from both ontologies and databases.
The results showed that in both databases, the overall im-
pact of modifying the level in the hierarchy is minimal when

Table 2: dbpedia Corpora.

n Avg k Max k Min k Total k
1K 2 9 1 156

10K 2 14 1 231
100K 2 16 1 263
1M 2 26 1 302

10M 2 46 1 308

fied to have the classes as column names and the documents
as rows. Hence, the experiments were set to use this horizon-
tal layout for the traditional cube operator and the vertical
layout was used for CUBO. In addition, the traditional cube
was only performed in the lowest hierarchical level due to the
lack of native support for hierarchies. Obtaining a similar
result with the cube (or sql queries) will require loading the
ontology in a star schema that should be known upfront, and
then running the cube operator several times for every level.
The results, presented in Table 3, show that our algorithm
performs an order of magnitude better than the traditional
data cube operator in only the lowest level of the hierarchy
(level h − 1). Moreover, the traditional data cube operator
cannot scale to a larger number of dimensions to compute.
This is due to the fact that the traditional data cube is
also computing those dimensions that have zeroes. We did
not perform this experiment in the TPCH data set because
this data set exceeds the maximum number of dimensions
allowed in a relational table.

Table 3: Performance of Traditional Cube and

CUBO (* unable to compute)

d Traditional Single Level CUBO
2 36 5
4 36 8
8 37 9

16 * 15
32 * 44
64 * 96

In Figure 6, we present scalability experiments by varying
the size of the corpus in the synthetic and real databases.
The size of Q was fixed to ten, and the corpora included
a range of collections from 1K to 10M of documents. The
experiments showed that CUBO scales linearly based on the
number of documents in the collection. However, the speed
of the increase is related to the average number of dimen-
sions per document. Therefore, a data set with a smaller
average of dimensions per document will be processed faster
than one with a larger average of dimensions.

Additional scalability experiments for our algorithm in-
clude modifying the number of dimensions in Q. In Figure
7, we show the results for the TPCH and dbpedia databases.
The results perform as expected in the complexity analysis
discussed in subsection 3.4. The plot shows an exponential
increase related to the average number of dimensions per
document. Hence, dbpedia has a larger exponential growth
than the TPCH data set. This is due to the larger average
number of sparse dimensions per document in dbpedia than
TPCH. A lower number of average dimensions per docu-

Figure 6: Varying Corpus Size.

Figure 7: Varying Number of Dimensions.

ment results in an avoidance to compute large combos and
a decrease in the exponential growth (shown in the TPCH
data set). The inflection point of the function is the result
of the selectivity of dimensions in the corpora, hence, this
point depends on each data set.
Experiments showing the space complexity of our algo-

rithm were also run. Figure 8 presents the results of this
experiment for both collections. Notice that the axes have
different scales due to the sparsity of the databases (TPCH
is more sparse). The dbpedia data set shows a clear expo-
nential growth of the data structure size. In a similar man-
ner, TPCH has a similar growth that is almost undetectable
due to the sparsity of the data set. We also found that
the maximum k that we were able to compute was around
100 dimensions and an ontology input file of around 2 MB.
However, this limitation is DBMS-specific.
Further experimental analysis of complexity of the algo-

rithm is shown in Tables 4 and 5. These tables show the per-
formance results of modifying the number of levels that are
taken into consideration from both ontologies and databases.
The results showed that in both databases, the overall im-
pact of modifying the level in the hierarchy is minimal when

Figure 8: CUBO Size when Varying Number of Di-
mensions.

Table 4: Varying Ontology Levels in dbpedia (time
in seconds).

n ALL MAX 2 MAX 1
1K 2 2 1

10K 2 3 1
100K 2 3 1
1M 7 6 5

10M 36 28 25

the average k is small in all the text collections. However,
there is an almost linear increase for the real data set in
the largest of the collections. It is then possible to observe
that our experimental results support our theoretical upper
bound of O(n2dh), in which there is an exponential growth.
Due to our lazy policy of only computing those dimensions
that are present, in practice, the complexity of the algorithm
is followed by an almost constant performance (e.g. there
are no combinations involving all the k dimensions).

Finally, a profiling analysis of our algorithm in both databases
is shown in Tables 6 and 7. The experiments are consistent
regardless of the data set and show that obtaining the com-
binations is the least expensive step, along with storing the
results in the hash table. However, reading and building the
ontology in main memory takes longer than building the ac-
tual CUBO. As expected, the majority of the processing is
spent in access to secondary storage.

5. RELATED WORK

Using OLAP for summarizing text corpora has been pre-
sented in several works [11, 12, 18]. Early in [11], the au-
thors presented an approach to load all the documents in-
side a DBMS. The documents were all loaded into a star
schema that allowed the users to use traditional OLAP al-
gorithms in this scenario. The computations were focused
on keyword frequency. The main disadvantage of this early
work is the requirement to load all the data in a predefined
schema that will allow exploring using traditional OLAP
techniques. This approach is prohibitive when we have a

Table 5: Varying Ontology Levels in TPCH (time in
seconds).

n ALL MAX 2 MAX 1
1K 2 2 2

10K 2 2 2
100K 2 2 2
1M 3 2 2

10M 7 7 7

Table 6: Profiling dbpedia (time in seconds).
Task Time Percentage
Load Ontology 0.017 0%
On-demand Combinations 0.030 1%
Data Cube Aggregation 0.061 1%
I/O 5.891 98%
Total 6.000 100%

data set with a large number of dimensions unlike our ver-
tical layout approach that allows storing large dimensional
data sets. In [12], the authors propose Text Cube. This
approach focuses on computing a partial cube by using only
a partial materialization. Their algorithms are focused on
obtaining “on-demand”OLAP queries with the optimal pro-
cessing cost using a greedy algorithm. Unlike our approach,
we focus on computing all the existing dimensions of the
data cube at once by taking advantage of the text sparcity.
More recently in [18], Topic Cube is proposed to obtain a
more complex analysis than just data summarization. The
purpose of this new OLAP model is to extract dimensions
for existing text data using the probabilistic latent semantic
analysis. Despite the fact that their model and results are
interesting for generating a possible ontology, the authors
do not to propose a new data structure for the multidimen-
sional data cube (they compute the sql queries as required),
and focus on the quality of the built hierarchy.
In [7] and [8], we were able to adapt a traditional OLAP

data cube to efficiently process a sparse vertical fact table.
However, we were only computing a set of dimensions, and
the scalability of the algorithm was limited to only a few
dimensions. In addition, the papers were focused on the
aggregation of several measurements inside text corpora to
produce the most frequent cuboids for generating an unsu-
pervised ontology. This ontology was the result of a post-
processing phase on the resulting cuboids. In this paper, we
assume a given ontology, and it is used to summarize a set
of documents. Thus, the main contributions of this research
focus on a new algorithm that integrates the hierarchy given
by an ontology into a single data structure called CUBO. In
addition, we formalize and study in depth, the theoretical
and experimental complexity of our algorithm. Finally, our
new algorithm considers a way to manage several types of
hierarchies that can be present in an ontology.

6. CONCLUSIONS

In this paper, we proposed a novel approach, CUBO, for
summarizing text corpora based on a given ontology using
OLAP data cubes. CUBO represents an efficient, compact,

Conclusions

•  CUBO is an efficient and single pass algorithm for
summarizing hierarchical data.

•  CUBO is faster than using a traditional OLAP
algorithm.

•  CUBO performs faster than the theoretical upper
bound.

•  CUBO not sensitive to the branching factor.
 15	

Future Work

•  Support ontologies that do not fit in main memory.

•  Improve scalability on h (more than 5 levels deep).

•  Support unbalanced trees (ontologies) and ontologies with
multiple parents.

•  Support incremental computation of new dimensions.

•  CUBO needs to be explored in MPP databases.

16	

References	

[1]	
 J.	
 Lee,	
 D.	
 Grossman,	
 O.	
 Frieder,	
 and	
 M.C.	
 McCabe.	
 IntegraEng	
 structured	

	
 data	
 and	
 text:	
 A	
 mulE-­‐dimensional	
 approach.	
 In	
 Proc.	
 of	
 IEEE	

	
 InternaEonal	
 Conference	
 on	
 InformaEon	
 Technology:	
 Coding	
 and	

	
 CompuEng,	
 pages	
 264-­‐269,	
 2000.	

[2]	
 C.X.	
 Lin,	
 B.	
 Ding,	
 J.	
 Han,	
 F.	
 Zhu,	
 and	
 B.	
 Zhao.	
 Text	
 cube:	
 CompuEng	
 IR	

	
 measures	
 for	
 mulEdimensional	
 text	
 database	
 analysis.	
 In	
 Proc.	
 of	
 IEEE	

	
 ICDM,	
 pages	
 905-­‐910,	
 2008.	

	

[3]	
 D.	
 Zhang,	
 C.	
 Zhai,	
 and	
 J.	
 Han.	
 Topic	
 cube:	
 Topic	
 modeling	
 for	
 OLAP	
 on	

	
 mulEdimensional	
 text	
 databases.	
 In	
 Proc.	
 of	
 SIAM	
 SDM	
 Conference,	

	
 2009.	

17	

