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user under the form of an intensional answer mixed with
a partial extensional answer. More specifically, the idea is
to use an intensional answer to concisely characterize the
cube regions whose data approximately match with the ex-
pectation, and an extensional answer to describe in detail
only the cube regions whose data significantly di↵er from
the expectation.

Using Motro’s criteria, our approach can be classified as
mixed, partial, and dependent. While it is general —because
it is independent of the particular method adopted for build-
ing the expected cube and deriving the intensional answer—
we precisely describe an instance of it that relies on previ-
ous contributions in the domain of cube modeling and in-
tensional answers.

The paper outline is as follows. Section 2 introduces the
general framework we propose while Section 3 describes a
specific instantiation. Section 4 discusses the related litera-
ture, and Section 5 draws the conclusion.

2. THE FRAMEWORK
This section motivates and then introduces the general

framework we propose, starting with the definition of cubes
and queries (based on a simplified formalization used in [1]).

2.1 Motivating Example
This simple example will give an intuition of our approach.

We consider a cube of sales per city, product, and month.
Three hierarchies are defined, namely LOCATION, PROD-
UCT, and TIME (see Figure 1). For example, a product
(Redtab) belongs to a group (Levi’s). A portion of the cube
is shown below.
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Figure 1: Dimension hierarchies

Consider an OLAP session consisting of three queries that
investigate monthly sales of products. The first query simply
asks for the grand total, i.e., the total sales for all products,
all locations, all years. The system returns the total, say
640, to the user and updates the expected cube accordingly.

The user then combines a drill-down and a slice opera-
tor to ask for the 2011 monthly sales per product per state.
Knowing the grand total, she might expect that the distri-
bution of sales is the following:

Redtab Silvertab Loose Lowrise
Ontario Jan.11 20 20 20 20

Feb.11 20 20 20 20
NY Jan.11 20 20 20 20

Feb.11 20 20 20 20

These values are indeed those currently stored in the ex-
pected cube. However, the actual (extensional) answer to
the query is as follows:

Redtab Silvertab Loose Lowrise
Ontario Jan.11 0 0 10 10

Feb.11 20 20 10 10
NY Jan.11 60 40 20 20

Feb.11 60 40 20 20

Parts of this answer match the user’s current understand-
ing of data while others do not; to reduce the overall size
of the answer, the system compares the extensional answer
with the data in the expected cube, and it only returns the
“unexpected” facts:

Redtab Silvertab Loose Lowrise
Ontario Jan.11 0 0 10 10

Feb.11 10 10
NY Jan.11 60 40

Feb.11 60 40

integrated with an intensional answer that summarizes the
“expected” facts:

hOntario, Levi’s, Feb.11i: as expected
hNY, CK, 2011i: as expected

In this example, the “as expected” value is used to inform
the user that the facts not reported in the extensional an-
swer do not deviate at all from her expectation. A more
sophisticated form of intensional answer is discussed in Sec-
tion 3. Finally, the system uses the complete extensional
answer to update the expected cube.
Let the third query in the session be a drill-down to city.

The complete extensional answer is twice the size of the
previous one (because in this example we only have 2 cities
per state), but again the system may represent it concisely
using intensional information:

Redtab Silvertab
Jan.11 Queens 50 30

Brooklyn 10 10
Feb.11 Queens 40 40

Brooklyn 20 0

hOntario, All, 2011i: as expected
hNY, CK, 2011i: as expected

Importantly, the “as expected” value is now to be inter-
preted with respect to the user understanding of data after
the previous answer. This means, for instance, that the sales
of Redtab in Toronto for Feb. 2011 is 10 (the Feb. 2011 sales
for Redtab in Ontario is 20, which is expected to be fairly
distributed between Toronto and Ottawa).

2.2 Preliminary Definitions

2.2.1 Cubes
Our formalization of cubes involves hierarchies; however,

to keep the formalism simpler, and without actually restrict-
ing the validity of our approach, we will consider hierarchies
without branches, i.e., consisting of chains of levels.

Definition 2.1 (Multidimensional Schema). A mul-
tidimensional schema (or, briefly, a schema) is a couple
M = hL,Hi where:

• L is a finite set of levels, each level l 2 L being defined
on a categorical domain Dom(l);



The first query: 

•  Total of sales for all products, all years, 
all locations? 

•  System answers: 640 



The second query: 

•  Drill-down and slice: 2011 monthly sales 
per product per state? 

•  System answers: (Ontario, Levi’s, Feb.11) 
and (NY, CK, 2011) as expected, but: 
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2. THE FRAMEWORK
This section motivates and then introduces the general

framework we propose, starting with the definition of cubes
and queries (based on a simplified formalization used in [1]).

2.1 Motivating Example
This simple example will give an intuition of our approach.

We consider a cube of sales per city, product, and month.
Three hierarchies are defined, namely LOCATION, PROD-
UCT, and TIME (see Figure 1). For example, a product
(Redtab) belongs to a group (Levi’s). A portion of the cube
is shown below.
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Figure 1: Dimension hierarchies

Consider an OLAP session consisting of three queries that
investigate monthly sales of products. The first query simply
asks for the grand total, i.e., the total sales for all products,
all locations, all years. The system returns the total, say
640, to the user and updates the expected cube accordingly.

The user then combines a drill-down and a slice opera-
tor to ask for the 2011 monthly sales per product per state.
Knowing the grand total, she might expect that the distri-
bution of sales is the following:

Redtab Silvertab Loose Lowrise
Ontario Jan.11 20 20 20 20

Feb.11 20 20 20 20
NY Jan.11 20 20 20 20

Feb.11 20 20 20 20

These values are indeed those currently stored in the ex-
pected cube. However, the actual (extensional) answer to
the query is as follows:

Redtab Silvertab Loose Lowrise
Ontario Jan.11 0 0 10 10

Feb.11 20 20 10 10
NY Jan.11 60 40 20 20

Feb.11 60 40 20 20

Parts of this answer match the user’s current understand-
ing of data while others do not; to reduce the overall size
of the answer, the system compares the extensional answer
with the data in the expected cube, and it only returns the
“unexpected” facts:

Redtab Silvertab Loose Lowrise
Ontario Jan.11 0 0 10 10

Feb.11 10 10
NY Jan.11 60 40

Feb.11 60 40

integrated with an intensional answer that summarizes the
“expected” facts:

hOntario, Levi’s, Feb.11i: as expected
hNY, CK, 2011i: as expected

In this example, the “as expected” value is used to inform
the user that the facts not reported in the extensional an-
swer do not deviate at all from her expectation. A more
sophisticated form of intensional answer is discussed in Sec-
tion 3. Finally, the system uses the complete extensional
answer to update the expected cube.
Let the third query in the session be a drill-down to city.

The complete extensional answer is twice the size of the
previous one (because in this example we only have 2 cities
per state), but again the system may represent it concisely
using intensional information:

Redtab Silvertab
Jan.11 Queens 50 30

Brooklyn 10 10
Feb.11 Queens 40 40

Brooklyn 20 0

hOntario, All, 2011i: as expected
hNY, CK, 2011i: as expected

Importantly, the “as expected” value is now to be inter-
preted with respect to the user understanding of data after
the previous answer. This means, for instance, that the sales
of Redtab in Toronto for Feb. 2011 is 10 (the Feb. 2011 sales
for Redtab in Ontario is 20, which is expected to be fairly
distributed between Toronto and Ottawa).

2.2 Preliminary Definitions

2.2.1 Cubes
Our formalization of cubes involves hierarchies; however,

to keep the formalism simpler, and without actually restrict-
ing the validity of our approach, we will consider hierarchies
without branches, i.e., consisting of chains of levels.

Definition 2.1 (Multidimensional Schema). A mul-
tidimensional schema (or, briefly, a schema) is a couple
M = hL,Hi where:

• L is a finite set of levels, each level l 2 L being defined
on a categorical domain Dom(l);
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specific instantiation. Section 4 discusses the related litera-
ture, and Section 5 draws the conclusion.

2. THE FRAMEWORK
This section motivates and then introduces the general

framework we propose, starting with the definition of cubes
and queries (based on a simplified formalization used in [1]).

2.1 Motivating Example
This simple example will give an intuition of our approach.

We consider a cube of sales per city, product, and month.
Three hierarchies are defined, namely LOCATION, PROD-
UCT, and TIME (see Figure 1). For example, a product
(Redtab) belongs to a group (Levi’s). A portion of the cube
is shown below.
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Figure 1: Dimension hierarchies

Consider an OLAP session consisting of three queries that
investigate monthly sales of products. The first query simply
asks for the grand total, i.e., the total sales for all products,
all locations, all years. The system returns the total, say
640, to the user and updates the expected cube accordingly.

The user then combines a drill-down and a slice opera-
tor to ask for the 2011 monthly sales per product per state.
Knowing the grand total, she might expect that the distri-
bution of sales is the following:

Redtab Silvertab Loose Lowrise
Ontario Jan.11 20 20 20 20

Feb.11 20 20 20 20
NY Jan.11 20 20 20 20

Feb.11 20 20 20 20

These values are indeed those currently stored in the ex-
pected cube. However, the actual (extensional) answer to
the query is as follows:

Redtab Silvertab Loose Lowrise
Ontario Jan.11 0 0 10 10

Feb.11 20 20 10 10
NY Jan.11 60 40 20 20

Feb.11 60 40 20 20

Parts of this answer match the user’s current understand-
ing of data while others do not; to reduce the overall size
of the answer, the system compares the extensional answer
with the data in the expected cube, and it only returns the
“unexpected” facts:

Redtab Silvertab Loose Lowrise
Ontario Jan.11 0 0 10 10

Feb.11 10 10
NY Jan.11 60 40

Feb.11 60 40

integrated with an intensional answer that summarizes the
“expected” facts:

hOntario, Levi’s, Feb.11i: as expected
hNY, CK, 2011i: as expected

In this example, the “as expected” value is used to inform
the user that the facts not reported in the extensional an-
swer do not deviate at all from her expectation. A more
sophisticated form of intensional answer is discussed in Sec-
tion 3. Finally, the system uses the complete extensional
answer to update the expected cube.
Let the third query in the session be a drill-down to city.

The complete extensional answer is twice the size of the
previous one (because in this example we only have 2 cities
per state), but again the system may represent it concisely
using intensional information:

Redtab Silvertab
Jan.11 Queens 50 30

Brooklyn 10 10
Feb.11 Queens 40 40

Brooklyn 20 0

hOntario, All, 2011i: as expected
hNY, CK, 2011i: as expected

Importantly, the “as expected” value is now to be inter-
preted with respect to the user understanding of data after
the previous answer. This means, for instance, that the sales
of Redtab in Toronto for Feb. 2011 is 10 (the Feb. 2011 sales
for Redtab in Ontario is 20, which is expected to be fairly
distributed between Toronto and Ottawa).

2.2 Preliminary Definitions

2.2.1 Cubes
Our formalization of cubes involves hierarchies; however,

to keep the formalism simpler, and without actually restrict-
ing the validity of our approach, we will consider hierarchies
without branches, i.e., consisting of chains of levels.

Definition 2.1 (Multidimensional Schema). A mul-
tidimensional schema (or, briefly, a schema) is a couple
M = hL,Hi where:

• L is a finite set of levels, each level l 2 L being defined
on a categorical domain Dom(l);
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An instance of the framework 

•  Relying on past contributions 
– Cube modeling  

•  Using maximum entropy principle 
–  like in [Sarawagi, VLDB’00], [Palpanas & al., TKDE05] 

–  Intensional answers: 
•  Information theoretic characterization 

–  like in  [Chum & Muntz, VLDB’88] 

•  Using hierarchies to build the IA 
–  like in [Park & Yoon, HICSS’99] 



Improve the expected cube 

•  The estimated values are those that: 
– maximize the uniformity of data values 
– maintain the value of known aggregates 

•  Estimates are scored: 
– A confidence score is computed from a 

distance in the group by lattice  
– the more precise the aggregate used for 

estimation, the more accurate the estimate, 
and the higher the score  



Example 

•  System answers: grand total is 640 
•  Expected 2011 monthly sales per product 

per state is: 
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user under the form of an intensional answer mixed with
a partial extensional answer. More specifically, the idea is
to use an intensional answer to concisely characterize the
cube regions whose data approximately match with the ex-
pectation, and an extensional answer to describe in detail
only the cube regions whose data significantly di↵er from
the expectation.

Using Motro’s criteria, our approach can be classified as
mixed, partial, and dependent. While it is general —because
it is independent of the particular method adopted for build-
ing the expected cube and deriving the intensional answer—
we precisely describe an instance of it that relies on previ-
ous contributions in the domain of cube modeling and in-
tensional answers.

The paper outline is as follows. Section 2 introduces the
general framework we propose while Section 3 describes a
specific instantiation. Section 4 discusses the related litera-
ture, and Section 5 draws the conclusion.

2. THE FRAMEWORK
This section motivates and then introduces the general

framework we propose, starting with the definition of cubes
and queries (based on a simplified formalization used in [1]).

2.1 Motivating Example
This simple example will give an intuition of our approach.

We consider a cube of sales per city, product, and month.
Three hierarchies are defined, namely LOCATION, PROD-
UCT, and TIME (see Figure 1). For example, a product
(Redtab) belongs to a group (Levi’s). A portion of the cube
is shown below.
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Figure 1: Dimension hierarchies

Consider an OLAP session consisting of three queries that
investigate monthly sales of products. The first query simply
asks for the grand total, i.e., the total sales for all products,
all locations, all years. The system returns the total, say
640, to the user and updates the expected cube accordingly.

The user then combines a drill-down and a slice opera-
tor to ask for the 2011 monthly sales per product per state.
Knowing the grand total, she might expect that the distri-
bution of sales is the following:

Redtab Silvertab Loose Lowrise
Ontario Jan.11 20 20 20 20

Feb.11 20 20 20 20
NY Jan.11 20 20 20 20

Feb.11 20 20 20 20

These values are indeed those currently stored in the ex-
pected cube. However, the actual (extensional) answer to
the query is as follows:

Redtab Silvertab Loose Lowrise
Ontario Jan.11 0 0 10 10

Feb.11 20 20 10 10
NY Jan.11 60 40 20 20

Feb.11 60 40 20 20

Parts of this answer match the user’s current understand-
ing of data while others do not; to reduce the overall size
of the answer, the system compares the extensional answer
with the data in the expected cube, and it only returns the
“unexpected” facts:

Redtab Silvertab Loose Lowrise
Ontario Jan.11 0 0 10 10

Feb.11 10 10
NY Jan.11 60 40

Feb.11 60 40

integrated with an intensional answer that summarizes the
“expected” facts:

hOntario, Levi’s, Feb.11i: as expected
hNY, CK, 2011i: as expected

In this example, the “as expected” value is used to inform
the user that the facts not reported in the extensional an-
swer do not deviate at all from her expectation. A more
sophisticated form of intensional answer is discussed in Sec-
tion 3. Finally, the system uses the complete extensional
answer to update the expected cube.
Let the third query in the session be a drill-down to city.

The complete extensional answer is twice the size of the
previous one (because in this example we only have 2 cities
per state), but again the system may represent it concisely
using intensional information:

Redtab Silvertab
Jan.11 Queens 50 30

Brooklyn 10 10
Feb.11 Queens 40 40

Brooklyn 20 0

hOntario, All, 2011i: as expected
hNY, CK, 2011i: as expected

Importantly, the “as expected” value is now to be inter-
preted with respect to the user understanding of data after
the previous answer. This means, for instance, that the sales
of Redtab in Toronto for Feb. 2011 is 10 (the Feb. 2011 sales
for Redtab in Ontario is 20, which is expected to be fairly
distributed between Toronto and Ottawa).

2.2 Preliminary Definitions

2.2.1 Cubes
Our formalization of cubes involves hierarchies; however,

to keep the formalism simpler, and without actually restrict-
ing the validity of our approach, we will consider hierarchies
without branches, i.e., consisting of chains of levels.

Definition 2.1 (Multidimensional Schema). A mul-
tidimensional schema (or, briefly, a schema) is a couple
M = hL,Hi where:

• L is a finite set of levels, each level l 2 L being defined
on a categorical domain Dom(l);
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Predict the extensional 
answer 

•  Run the query over the expected cube: 
– Not only the slice requested by the query  
– But also slices with the same schema that 

have the best confidence score 



Example 

•  If the facts and their scores are: 

•  If the query asks for the 2012 sales of CK 
by state, then slice (All,CK,2011) will be 
used to adjust the prediction 

closer group-by sets. In particular, we propose to define
Extq(EC) by using, besides �⌃,g

sel

(EC), the slice(s) of EC
with highest confidence among those having schema ⌃.

Example 3.4. Consider the following sample of EC,
where each fact is associated with the aggregate used to esti-
mate it as well as with the fact’s confidence.

f Agg(f) conf(f)
hhOntario,CK,2012i, 80i hhAll,All,2012i, 320i 0.4

hhNY,CK,2012i, 80i hhAll,All,2012i, 320i 0.4
hhOntario,CK,2011i, 80i hhAll,CK,2011i, 120i 0.9

hhNY,CK,2011i, 80i hhNY,All,2011i, 280i 0.9

The first two facts form slice �2012 = �⌃,hAll,CK,2012i where
⌃ = hhState,Group,Yeari, hAll,Group,Yearii while the last
two facts form slice �2011 = �⌃,hAll,CK,2011i. Now let q ask
for the 2012 sales for CK by states. It turns out that the
estimates for 2011 (slice �2011) have higher confidence than
those for 2012 (slice �2012). Therefore, the former will be
used to adjust the latter.

Finding the slices of EC to compute the expected exten-
sional answer to q is done with Algorithm 2, whose expla-
nation is given below. Let

Same(G, gsel) = {g0sel 2 DomEC(Gsel)|
8i 2 {1, . . . , n}, G.hi � Gsel.hi ) g0sel.hi = gsel.hi}

where G.hi denotes the level of group-by set G in hierarchy
hi and g.hi denotes the value of coordinate g in hi. Im-
portantly, for each g0sel 2 Same(G, gsel), and whatever the
hierarchy, the level value used in g0sel rolls up to the same
level value as the one used in gsel. Among the slices over the
coordinates in Same(G, gsel), the ones achieving the high-
est confidence are retained only (candidate slices, line 1 of
Algorithm 2):

Cand(q) = argmaxg0
sel

2Same(G,g
sel

)conf(�⌃,g0
sel

(EC))

If �⌃,g
sel

(EC) 2 Cand(q) (i.e., the slice precisely requested
by q has highest confidence) then it is returned as the ex-
pected extensional answer (lines 2-3). Otherwise, the other
slices in Cand(q) will be used as well (lines 4-18). Let g
be the coordinate of one of the facts in �⌃,g

sel

(EC) to be
predicted (line 7); let �⇤ be a slice in Cand(q) and g⇤ be the
homologous coordinate to g in �⇤ (line 11). For each �⇤ (line
10), the proportion of EC(g⇤) to the closest aggregate that
was used to estimate it (line 13) is computed and weighted
with the confidence of EC(g⇤) (line 14). This weighted ratio
is applied to the aggregate that is used to predict EC(g). Fi-
nally, the prediction for EC(g) is the weighted average over
all slices in Cand(q) (line 16). Note that this principle is con-
sistent with the way IPF estimates values from aggregates.
Note also that the predicted slice as output by Algorithm 2
is not used to update the expected cube, since, as mentioned
above, only actual extensional answers are used to that end.

Example 3.5. Going on with Example 3.4, it is

Same(hState,Group,Yeari, hAll,CK,2012i) =
{hAll,CK,2011i, hAll,CK,2012i,
{hAll,Levi’s,2011i, hAll,Levi’s,2012i}

and

Cand(q) = {�2011}

The expected extensional answer will include fact hhOntario,
CK,2012i, 172.3i because

320⇥ 80
120 ⇥ 0.9 + 320⇥ 80

320 ⇥ 0.4

0.9 + 0.4
= 172.3

Algorithm 2 Predict
Input: q = h⌃ = hG,G

sel

i, g
sel

i: the current query; EC: the ex-
pected cube

Output: Ext
q

(EC): the expected extensional answer
1: let Cand(q) = argmax

g

0
sel

2Same(G,g

sel

)conf(�⌃,g

0
sel

(EC))

2: if �⌃,g

sel

(EC) 2 Cand(q) then

3: return �⌃,g

sel

(EC)

4: else
5: Ext

q

(EC) = ;
6: Cand(q) = Cand(q) [ {�⌃,g

sel

(EC)}
7: for each fact hg, EC(g)i 2 �⌃,g
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3.3 Build
The aim of this step is to derive an intensional answer

from the extensional answer obtained from C and from the
expected extensional answer obtained from EC. We propose
an approach loosely inspired by that of [17] and [20], in
the sense that hierarchies are used to derive the intensional
answer in the spirit of [17], and an information theoretic
characterization is used in the spirit of [20].
More precisely, the extensional answer Extq(C) and the

expected extensional answer Extq(EC) are compared by
computing, for each coordinate, the deviation of the fact
value in Extq(C) from the one in Extq(EC), using the esti-
mation error, normalized with the standard deviation of all
estimation errors, as in [16].
A first basic intensional answer is formed with these devi-

ations, as the set of couples {hg, di} where d = |C(g)�EC(g)|
�

,

hg, C(g)i is a fact of the extensional answer, hg,EC(g)i is a
fact in the expected extensional answer, and � is the stan-
dard deviation of all estimation errors.
The final intensional answer is derived from the basic in-

tensional answer by looking for regions of the basic inten-
sional answer where deviations are homogeneous enough (us-
ing a threshold ↵) and the mean deviation is low (using a
threshold �). These regions are delimited using the granular-
ity levels that are coarser than that of the basic intensional
answer.
The homogeneity is formally computed as the entropy,

i.e., for a given slice �, it is H(�) =
P

hg,di2� d ⇥ log(d),
and the final intensional answer is computed by Algorithm
3. Each couple hg, di of the final intensional answer is in-
terpreted as the facts covered by hg, di being close to the
prediction. This intensional answer is then complemented
with the facts of the extensional answer that are not cov-
ered by the intensional answer, since those facts deviate too



Example 

•  If the facts and their scores are: 

•  If the query asks for the 2012 sales of CK 
by state, then slice (All,CK,2011) will be 
used to adjust the prediction 

•  Expected value for (Ontario,CK,2012) is: 

closer group-by sets. In particular, we propose to define
Extq(EC) by using, besides �⌃,g

sel

(EC), the slice(s) of EC
with highest confidence among those having schema ⌃.

Example 3.4. Consider the following sample of EC,
where each fact is associated with the aggregate used to esti-
mate it as well as with the fact’s confidence.

f Agg(f) conf(f)
hhOntario,CK,2012i, 80i hhAll,All,2012i, 320i 0.4

hhNY,CK,2012i, 80i hhAll,All,2012i, 320i 0.4
hhOntario,CK,2011i, 80i hhAll,CK,2011i, 120i 0.9

hhNY,CK,2011i, 80i hhNY,All,2011i, 280i 0.9

The first two facts form slice �2012 = �⌃,hAll,CK,2012i where
⌃ = hhState,Group,Yeari, hAll,Group,Yearii while the last
two facts form slice �2011 = �⌃,hAll,CK,2011i. Now let q ask
for the 2012 sales for CK by states. It turns out that the
estimates for 2011 (slice �2011) have higher confidence than
those for 2012 (slice �2012). Therefore, the former will be
used to adjust the latter.

Finding the slices of EC to compute the expected exten-
sional answer to q is done with Algorithm 2, whose expla-
nation is given below. Let

Same(G, gsel) = {g0sel 2 DomEC(Gsel)|
8i 2 {1, . . . , n}, G.hi � Gsel.hi ) g0sel.hi = gsel.hi}

where G.hi denotes the level of group-by set G in hierarchy
hi and g.hi denotes the value of coordinate g in hi. Im-
portantly, for each g0sel 2 Same(G, gsel), and whatever the
hierarchy, the level value used in g0sel rolls up to the same
level value as the one used in gsel. Among the slices over the
coordinates in Same(G, gsel), the ones achieving the high-
est confidence are retained only (candidate slices, line 1 of
Algorithm 2):

Cand(q) = argmaxg0
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2Same(G,g
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)conf(�⌃,g0
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(EC))

If �⌃,g
sel

(EC) 2 Cand(q) (i.e., the slice precisely requested
by q has highest confidence) then it is returned as the ex-
pected extensional answer (lines 2-3). Otherwise, the other
slices in Cand(q) will be used as well (lines 4-18). Let g
be the coordinate of one of the facts in �⌃,g

sel

(EC) to be
predicted (line 7); let �⇤ be a slice in Cand(q) and g⇤ be the
homologous coordinate to g in �⇤ (line 11). For each �⇤ (line
10), the proportion of EC(g⇤) to the closest aggregate that
was used to estimate it (line 13) is computed and weighted
with the confidence of EC(g⇤) (line 14). This weighted ratio
is applied to the aggregate that is used to predict EC(g). Fi-
nally, the prediction for EC(g) is the weighted average over
all slices in Cand(q) (line 16). Note that this principle is con-
sistent with the way IPF estimates values from aggregates.
Note also that the predicted slice as output by Algorithm 2
is not used to update the expected cube, since, as mentioned
above, only actual extensional answers are used to that end.

Example 3.5. Going on with Example 3.4, it is
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{hAll,CK,2011i, hAll,CK,2012i,
{hAll,Levi’s,2011i, hAll,Levi’s,2012i}
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The expected extensional answer will include fact hhOntario,
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0.9 + 0.4
= 172.3
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3.3 Build
The aim of this step is to derive an intensional answer

from the extensional answer obtained from C and from the
expected extensional answer obtained from EC. We propose
an approach loosely inspired by that of [17] and [20], in
the sense that hierarchies are used to derive the intensional
answer in the spirit of [17], and an information theoretic
characterization is used in the spirit of [20].
More precisely, the extensional answer Extq(C) and the

expected extensional answer Extq(EC) are compared by
computing, for each coordinate, the deviation of the fact
value in Extq(C) from the one in Extq(EC), using the esti-
mation error, normalized with the standard deviation of all
estimation errors, as in [16].
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fact in the expected extensional answer, and � is the stan-
dard deviation of all estimation errors.
The final intensional answer is derived from the basic in-

tensional answer by looking for regions of the basic inten-
sional answer where deviations are homogeneous enough (us-
ing a threshold ↵) and the mean deviation is low (using a
threshold �). These regions are delimited using the granular-
ity levels that are coarser than that of the basic intensional
answer.
The homogeneity is formally computed as the entropy,

i.e., for a given slice �, it is H(�) =
P

hg,di2� d ⇥ log(d),
and the final intensional answer is computed by Algorithm
3. Each couple hg, di of the final intensional answer is in-
terpreted as the facts covered by hg, di being close to the
prediction. This intensional answer is then complemented
with the facts of the extensional answer that are not cov-
ered by the intensional answer, since those facts deviate too
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The homogeneity is formally computed as the entropy,
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with the facts of the extensional answer that are not cov-
ered by the intensional answer, since those facts deviate too



Build the intensional 
answer 

•  EA and EEA are compared 
•  Regions are labeled "as expected" if 

– Deviations in the region are low 
– Déviations in the region are homogeneous 

•  Regions are delimited using granularity 
levels coarser than the ones of the EA 



Example 

•  Expected answer: 

•  Extensional answer: 

•  (Ontario, Levi’s, Feb.11) and (NY, CK, 2011) 
as expected 

user under the form of an intensional answer mixed with
a partial extensional answer. More specifically, the idea is
to use an intensional answer to concisely characterize the
cube regions whose data approximately match with the ex-
pectation, and an extensional answer to describe in detail
only the cube regions whose data significantly di↵er from
the expectation.

Using Motro’s criteria, our approach can be classified as
mixed, partial, and dependent. While it is general —because
it is independent of the particular method adopted for build-
ing the expected cube and deriving the intensional answer—
we precisely describe an instance of it that relies on previ-
ous contributions in the domain of cube modeling and in-
tensional answers.

The paper outline is as follows. Section 2 introduces the
general framework we propose while Section 3 describes a
specific instantiation. Section 4 discusses the related litera-
ture, and Section 5 draws the conclusion.

2. THE FRAMEWORK
This section motivates and then introduces the general

framework we propose, starting with the definition of cubes
and queries (based on a simplified formalization used in [1]).

2.1 Motivating Example
This simple example will give an intuition of our approach.

We consider a cube of sales per city, product, and month.
Three hierarchies are defined, namely LOCATION, PROD-
UCT, and TIME (see Figure 1). For example, a product
(Redtab) belongs to a group (Levi’s). A portion of the cube
is shown below.

Redtab Silvertab
Jan.11 Feb.11 Jan.11 Feb.11

Queens 50 40 30 40
Brooklyn 10 20 10 0
Toronto 0 10 0 10
Ottawa 0 10 0 10

All!
NY!

Ontario! Toronto!
Ottawa!
Queens!
Brooklyn!

All State City 
LOCATION 

All!
CK!

Levi’s! Redtab!
Silvertab!
Loose!
Lowrise!

All Group Product 
PRODUCT 

All!
2011!

2012! Jan.12!
Feb.12!
Jan.11!
Feb.11!

All Year Month 
TIME 

Figure 1: Dimension hierarchies

Consider an OLAP session consisting of three queries that
investigate monthly sales of products. The first query simply
asks for the grand total, i.e., the total sales for all products,
all locations, all years. The system returns the total, say
640, to the user and updates the expected cube accordingly.

The user then combines a drill-down and a slice opera-
tor to ask for the 2011 monthly sales per product per state.
Knowing the grand total, she might expect that the distri-
bution of sales is the following:

Redtab Silvertab Loose Lowrise
Ontario Jan.11 20 20 20 20

Feb.11 20 20 20 20
NY Jan.11 20 20 20 20

Feb.11 20 20 20 20

These values are indeed those currently stored in the ex-
pected cube. However, the actual (extensional) answer to
the query is as follows:

Redtab Silvertab Loose Lowrise
Ontario Jan.11 0 0 10 10

Feb.11 20 20 10 10
NY Jan.11 60 40 20 20

Feb.11 60 40 20 20

Parts of this answer match the user’s current understand-
ing of data while others do not; to reduce the overall size
of the answer, the system compares the extensional answer
with the data in the expected cube, and it only returns the
“unexpected” facts:

Redtab Silvertab Loose Lowrise
Ontario Jan.11 0 0 10 10

Feb.11 10 10
NY Jan.11 60 40

Feb.11 60 40

integrated with an intensional answer that summarizes the
“expected” facts:

hOntario, Levi’s, Feb.11i: as expected
hNY, CK, 2011i: as expected

In this example, the “as expected” value is used to inform
the user that the facts not reported in the extensional an-
swer do not deviate at all from her expectation. A more
sophisticated form of intensional answer is discussed in Sec-
tion 3. Finally, the system uses the complete extensional
answer to update the expected cube.
Let the third query in the session be a drill-down to city.

The complete extensional answer is twice the size of the
previous one (because in this example we only have 2 cities
per state), but again the system may represent it concisely
using intensional information:

Redtab Silvertab
Jan.11 Queens 50 30

Brooklyn 10 10
Feb.11 Queens 40 40

Brooklyn 20 0

hOntario, All, 2011i: as expected
hNY, CK, 2011i: as expected

Importantly, the “as expected” value is now to be inter-
preted with respect to the user understanding of data after
the previous answer. This means, for instance, that the sales
of Redtab in Toronto for Feb. 2011 is 10 (the Feb. 2011 sales
for Redtab in Ontario is 20, which is expected to be fairly
distributed between Toronto and Ottawa).

2.2 Preliminary Definitions

2.2.1 Cubes
Our formalization of cubes involves hierarchies; however,

to keep the formalism simpler, and without actually restrict-
ing the validity of our approach, we will consider hierarchies
without branches, i.e., consisting of chains of levels.

Definition 2.1 (Multidimensional Schema). A mul-
tidimensional schema (or, briefly, a schema) is a couple
M = hL,Hi where:

• L is a finite set of levels, each level l 2 L being defined
on a categorical domain Dom(l);user under the form of an intensional answer mixed with
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on a categorical domain Dom(l);



Conclusion 

•  A generic and flexible framework for 
computing intensional answers to OLAP 
queries  
– Leverages the previous queries of the session 
– Helps reduce the answer’s size 

•  An instance of the framework 
– Assumes uniformly distributed values 
– Specific details and procedures 



Future directions 

•  Different instantiations of the 3 steps 
– Alternatives to uniform assumption 
– A different kind of intensional answer 
– User’s profile to generate the IA 

•  Coupling with a recommendation engine 
– Among various possible queries, recommend 

the one whose answer diverges the most 
from the user’s expectation 



Thanks for your attention 
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