

Consider the following scenario...

The cube (portion)

TIME					
All	Year	Month			
	2012	Jan.12			
A 11	2012	Feb.12			
All	2011	Jan.11			
	2011	Feb.11			

	Redtab		Silve	ertab
	Jan.11 Feb.11		Jan.11	Feb.11
Queens	50	40	30	40
Brooklyn	10	20	10	0
Toronto	0	10	0	10
Ottawa	0	10	0	10

The first query:

- Total of sales for all products, all years, all locations?
- System answers: 640

The second query:

- Drill-down and slice: 2011 monthly sales per product per state?
- System answers: (Ontario, Levi's, Feb.11) and (NY, CK, 2011) as expected, but:

		Redtab	Silvertab	Loose	Lowrise
Ontario	Jan.11	0	0	10	10
	Feb.11			10	10
NY	Jan.11	60	40		_
	Feb.11	60	40		

UNIVERSITÉ FRANÇOIS - RABELAIS

The third query:

- Drill down to cities
- System answers: (Ontario, All, 2011) and (NY, CK, 2011) as expected, but:

		Redtab	Silvertab
Jan.11	Queens	50	30
	Brooklyn	10	10
Feb.11	Queens	40	40
	Brooklyn	20	0

Towards Intensional Answers to OLAP Queries for Analytical Sessions

Patrick Marcel, Rokia Missaoui, Stefano Rizzi
DOLAP 2012

Outline

- Motivation
- The approach
- An instance of the approach
- Future directions

Motivation

- Intensional Answers (IA)?
 - Concise description of the answer
- OLAP Queries (OQ)?
 - Known ☺
- Analytical Sessions (AS)?
 - Sequence of OLAP queries
- IA20Q4AS
 - Leveraging past queries to reduce the size of the answer

Approach overview

Startup

Execute

Predict

Improve

Build

UNIVERSITÉ FRANÇOIS - RABELAIS TOURS

An instance of the framework

- Relying on past contributions
 - Cube modeling
 - Using maximum entropy principle
 - like in [Sarawagi, VLDB'00], [Palpanas & al., TKDE05]
 - Intensional answers:
 - Information theoretic characterization
 - like in [Chum & Muntz, VLDB'88]
 - Using hierarchies to build the IA
 - like in [Park & Yoon, HICSS'99]

UNIVERSITÉ FRANÇOIS - RABELAIS TOURS

Improve the expected cube

- The estimated values are those that:
 - maximize the uniformity of data values
 - maintain the value of known aggregates
- Estimates are scored:
 - A confidence score is computed from a distance in the group by lattice
 - the more precise the aggregate used for estimation, the more accurate the estimate, and the higher the score

Example

System answers: grand total is 640

Expected 2011 monthly sales per product

per state is:

		Redtab	Silvertab	Loose	Lowrise
Ontario	Jan.11	20	20	20	20
	Feb.11	20	20	20	20
NY	Jan.11	20	20	20	20
	Feb.11	20	20	20	20

• Confidence of estimates is: avg(0.5, 0, 0)=0.17

Predict the extensional answer

- Run the query over the expected cube:
 - Not only the slice requested by the query
 - But also slices with the same schema that have the best confidence score

Example

If the facts and their scores are:

f	Agg(f)	conf(f)
$\langle \langle \text{Ontario,CK,2012} \rangle, 80 \rangle$	$\langle\langle All, All, 2012\rangle, 320\rangle$	0.4
$\langle\langle \mathrm{NY,CK,2012}\rangle, 80\rangle$	$\langle\langle All, All, 2012\rangle, 320\rangle$	0.4
$\langle\langle \text{Ontario,CK,2011}\rangle, 80\rangle$	$\langle\langle \mathrm{All,CK,2011}\rangle, 120\rangle$	0.9
$\langle\langle NY, CK, 2011 \rangle, 80 \rangle$	$\langle\langle \mathrm{NY,All,2011}\rangle,280\rangle$	0.9

• If the query asks for the 2012 sales of CK by state, then slice (All,CK,2011) will be used to adjust the prediction

Example

If the facts and their scores are:

```
\begin{array}{c|cccc} f & Agg(f) & conf(f) \\ \hline \hline $\langle \langle \text{Ontario,CK,2012} \rangle, 80 \rangle & $\langle \langle \text{All,All,2012} \rangle, 320 \rangle $ & 0.4 \\ \hline $\langle \langle \text{NY,CK,2012} \rangle, 80 \rangle & $\langle \langle \text{All,All,2012} \rangle, 320 \rangle $ & 0.4 \\ \hline $\langle \langle \text{Ontario,CK,2011} \rangle, 80 \rangle & $\langle \langle \text{All,CK,2011} \rangle, 120 \rangle $ & 0.9 \\ \hline $\langle \langle \text{NY,CK,2011} \rangle, 80 \rangle & $\langle \langle \text{NY,All,2011} \rangle, 280 \rangle $ & 0.9 \\ \hline \end{array}
```

- If the query asks for the 2012 sales of CK by state, then slice (All,CK,2011) will be used to adjust the prediction
- Expected value for (Ontario, CK, 2012) is:

$$\frac{320 \times \frac{80}{120} \times 0.9 + 320 \times \frac{80}{320} \times 0.4}{0.9 + 0.4} = 172.3$$

Build the intensional answer

- EA and EEA are compared
- Regions are labeled "as expected" if
 - Deviations in the region are low
 - Déviations in the region are homogeneous
- Regions are delimited using granularity levels coarser than the ones of the EA

Example

Expected answer:

			Redtab	Silvertab	Loose	Lowrise	
	Ontario	Jan.11	20	20	20	20	
		Feb.11	20	20	_20	20	
İ	NY	Jan.11	20	20	20	20	
		Feb.11	20	20	20	20	

Extensional answer:

		Redtab	Silvertab	Loose	Lowrise
Ontario	Jan.11	0	0_///	10	10
	Feb.11	20	20	10	10
NY	Jan.11	60	40	20	20
	Feb.11	60	40	20	20

 (Ontario, Levi's, Feb.11) and (NY, CK, 2011) as expected

Conclusion

- A generic and flexible framework for computing intensional answers to OLAP queries
 - Leverages the previous queries of the session
 - Helps reduce the answer's size
- An instance of the framework
 - Assumes uniformly distributed values
 - Specific details and procedures

Future directions

- Different instantiations of the 3 steps
 - Alternatives to uniform assumption
 - A different kind of intensional answer
 - User's profile to generate the IA
- Coupling with a recommendation engine
 - Among various possible queries, recommend the one whose answer diverges the most from the user's expectation

UNIVERSITÉ FRANÇOIS - RABELAIS TOURS

Thanks for your attention

