Enanced Clustering of Complex Database Objects in the ClustCube Framework

Alfredo Cuzzocrea, Paolo Serafino

ICAR-CNR, University of Calabria
Objectives:

- Mine complex database objects extracted from distributed database settings.
- Combine mining techniques (Clustering) and OLAP.
- Mine clustered objects in a multidimensional and multi-resolution fashion.

Main Contribution:

ClustCube, a novel computational paradigm for clustering complex database objects extracted from distributed database settings via well-understood OLAP technology. Effective and efficient algorithms for computing ClustCube cubes that are capable of significantly reducing computational efforts with respect to traditional approaches.
Outline

Objectives:
- Mine complex database objects extracted from distributed database settings.
- Combine mining techniques (Clustering) and OLAP.
- Mine clustered objects in a multidimensional and multi-resolution fashion.

Main Contribution:
- ClustCube, a novel computational paradigm for clustering complex database objects extracted from distributed database settings via well-understood OLAP technology.
- Effective and efficient algorithms for computing ClustCube cubes that are capable of significantly reducing computational efforts with respect to traditional approaches.
ClustCube Logic Architecture

- **Distributed Database Layer (DDBL):** where the target distributed database is located.
- **Complex Object Definition Layer (CODL):** primitives for defining and managing complex objects.
- **Object Layer (OL):** where complex objects are located.
- **ClustCube Definition & Management Layer (CCDML):** primitives for defining and managing ClustCube cubes.
- **ClustCube Layer (CCL):** stores the final ClustCube cubes.
ClustCube cells *store clusters of complex objects* instead of SQL-based aggregations.

Complex objects at OL are clustered by the CCDML Layer on the basis of analysis/mining tasks defined by the administrator of the analysis/mining process.

Objects are clustered by means of a generic clustering algorithm \mathcal{A} (depending on the characteristics of the input data).

\mathcal{A} employs a distance function d_{CODL} defined over the fields of complex objects.
Data cell C may contain a whole cluster or a sub-cluster.

Irregular partitions of the target object domain.
N-dimensional ClustCube cubes are equipped with a cuboid lattice \mathcal{L}, which is a hierarchical structure composed of 2^{N-1} cuboids.
Materialization Strategy: which cuboids to materialize?

1. **Full Materialization (FUL)**: all cuboids in \mathcal{L} are materialized.
2. **Partial Materialization (PAR)**: a sub-set of the 2^{N-1} cuboids of \mathcal{L} is materialized.

Building Strategy: how to compute cuboids?

1. **Baseline (BAS)**: each cuboid C_i in \mathcal{L}, is re-computed from the scratch (i.e., by applying algorithm A).
2. **Drill-down (DRIL)**: cuboids at level l of \mathcal{L} are computed from cuboids at level $l - 1$.

Alfredo Cuzzocrea, Paolo Serafino
Thanks for your attention!!!
Any question?