Approximate Answers to OLAP Queries on Streaming Data Warehouses

Michel DE ROUGEMONT, Phuong Thao CAO
Paris II Univ., South Paris Univ.
November 2, 2012
Outline

1. **Context: OLAP Queries**
 - Approximate answers
 - Streaming data

2. **Data exchange**
 Approximate answers with:
 - Sampling algorithm on the Sources
 - Use of Statistical dependencies

3. **Implementation**
1. Context

- **OLAP Schema**

```
RecordID | SensorID | Date     | Sun (hours) | Rain (hours)
---------|----------|----------|-------------|-------------
1001     | 8        | 11/02/12 | 8           | 2           
...      | ...      | ...      | ...         | ...         
```

- **Different streams feed the Fact table**

- **OLAP queries**
 (Sum of Measure)

 Measure=Hours of Sun
 Analysis by Country
 Analysis by Country/Manuf.
Approximation

- **Distance L_1**
 100% error for the blue area

- **Sampling:**
 - classical technology to approximate
 - streaming: It is hard to approximate (Cormode et al. 2003)

- **Data Exchange**
2. OLAP Data Exchange

- Different sources

- Different streams: hard to approximate in the worst case (Cormode et al. 2012)

How can we approximate queries in some special case? **statistical dependencies**
2.1 Streams with Different Rates

- Data warehouse
 - Union of different Sources
 - Rate of tuples of each Source is different
 (rate: relative number of tuples per unit of time)
Uniform samples on the Streams

• Approximate Algorithm
 – Step 1: sampling on each Source with uniform distribution. \#samples % to the rate of the Source.
 – Step 2: combine all samples according to the rates
 – Step 3: approximation on the union of samples

Theorem: On a window of size T, OLAP queries are ε-approximated with N samples (which depend on T and ε) with high probability.
2.2 Special Case: Statistical Dependencies

- Some attributes imply a distribution μ on the measure: $A.B.C \triangleleft M$
 - (a,b,c) determines a fixed distribution on M
 - Generalization of functional dependencies

- City \triangleleft Sun (μ distribution)

 Marseille:

 London:
Distribution of pairs

City.Country

<table>
<thead>
<tr>
<th>City</th>
<th>Country</th>
<th>Density of tuples</th>
</tr>
</thead>
<tbody>
<tr>
<td>London</td>
<td>U.K</td>
<td>1/12</td>
</tr>
<tr>
<td>Berlin</td>
<td>Germany</td>
<td>1/12</td>
</tr>
<tr>
<td>Paris</td>
<td>France</td>
<td>1/6</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Manufacturer.City (δ)

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>City</th>
<th>Density of tuples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thomson</td>
<td>London</td>
<td>1/12</td>
</tr>
<tr>
<td>Thomson</td>
<td>Berlin</td>
<td>1/12</td>
</tr>
<tr>
<td>Siemens</td>
<td>Paris</td>
<td>1/12</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>Distribution of Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.K.</td>
<td>0.64</td>
</tr>
<tr>
<td>Germany</td>
<td>0.21</td>
</tr>
<tr>
<td>France</td>
<td>0.15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Distribution of Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siemens</td>
<td>0.39</td>
</tr>
<tr>
<td>Thomson</td>
<td>0.61</td>
</tr>
</tbody>
</table>
Use of Statistical Hypothesis:
Distributed Algorithm

- **Each Source** \(i \), we sample by uniform distribution and:
 - Learn the \(\mu_i \)
 - Estimate the distribution on pairs \(\delta_i \)
 - Estimate its rate: \(r_i \)

- **Data Warehouse**:
 - Combine rates \(r_i \), \(\delta_i \) and \(\mu_i \) to approximate the OLAP query on A (Manufacturer)

\[
Q^M_{C=Siemens} = (r_1 \cdot Q^M_{C=Siemens})^1 + (r_2 \cdot Q^M_{C=Siemens})^2
\]

\[
= \frac{2}{3} \left[\sum_{City} \delta(Siemens, City) \cdot Avg(\mu_{City}) \right] + \frac{1}{3} \left[\sum_{City} \delta(Siemens, City) \cdot Avg(\mu_{City}) \right]
\]

\[
= 0.39
\]
Statistical Model

Advantages:
- Statistical dependencies: more intuitive
- Sources send only statistical dependencies
 (constant size of information on finite domains)
- Sources do not send samples
Our contribution

• Special situation: model of statistical dependencies on streaming data

• Approximation algorithms:
 – Sampling: each Source samples and we combine all the samples
 – Statistical model: combine statistical dependencies and distributions of pairs

• Worst case is not approximable
3. Implementation

- **Program**
 - Mondrian OLAP engine
 - Jpivot interface
- **Data warehouse**
 - 10^6 tuples
Approximate answer on sources:

- **Data warehouse**
 - 12 sensors: 6 in France, 3 in Germany, 3 U.K.
 - 2 manufacturers: Siemens, Thomson
 - 9 cities
 - $1 \leq \text{Sun, Rain} \leq 10$
- Statistical dependencies:
 - City \triangleleft Sun
 - Distribution of pairs
 - City.Country
 - Manufacturer.City
Example 1: Analysis by country

Source from U.K. m_1 samples

Source from Germany m_2 samples

Source from France m_3 samples

Data warehouse m samples = m_1, m_2, m_3
Approximate answer on sources:
Analysis by country

• Learn distributions μ_i, δ_i from samples

<table>
<thead>
<tr>
<th>City</th>
<th>Average value of Sun : $\text{Avg}_\mu(a_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>London</td>
<td>3.5</td>
</tr>
<tr>
<td>Berlin</td>
<td>5</td>
</tr>
<tr>
<td>Paris</td>
<td>7.5</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>City</th>
<th>Country</th>
<th>Density of tuples : $\delta(a_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>London</td>
<td>U.K.</td>
<td>1/12</td>
</tr>
<tr>
<td>Berlin</td>
<td>Germany</td>
<td>1/12</td>
</tr>
<tr>
<td>Paris</td>
<td>France</td>
<td>1/6</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

\[m_i = m \times \frac{\delta(a_i) \times \text{Avg}_\mu(a_i)}{\sum_i \delta(a_i) \times \text{Avg}_\mu(a_i)} \]
Approximate answer on sources: Analysis by country

\[m_i = m \times \frac{\delta(a_i) \times \text{Avg}_{\mu}(a_i)}{\sum_i \delta(a_i) \times \text{Avg}_{\mu}(a_i)} \]
Example 2: Analysis by Manufacturer

<table>
<thead>
<tr>
<th>City</th>
<th>Avg value of Sunlight : $\text{Avg}_\mu(a_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>London</td>
<td>3.5</td>
</tr>
<tr>
<td>Berlin</td>
<td>5</td>
</tr>
<tr>
<td>Paris</td>
<td>7.5</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>City</th>
<th>Density of tuples : $\delta(a_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thomson</td>
<td>London</td>
<td>1/12</td>
</tr>
<tr>
<td>Thomson</td>
<td>Berlin</td>
<td>1/12</td>
</tr>
<tr>
<td>Siemens</td>
<td>Paris</td>
<td>1/12</td>
</tr>
<tr>
<td>Thomson</td>
<td>Paris</td>
<td>1/12</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Manufacturer Distribution of Sun

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Distribution of Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siemens</td>
<td>0.39</td>
</tr>
<tr>
<td>Thomson</td>
<td>0.61</td>
</tr>
</tbody>
</table>

Approximate answer: Analysis by Manuf.
Analysis of errors

- All algorithms: rate of errors < 4%
- Statistical model is better than uniform sampling
- Statistical model is better than Measure based sampling

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Uniform sampling</th>
<th>Measure-based sampling</th>
<th>Linear estimation by the data exchange</th>
<th>Exact answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siemens</td>
<td>0.3851</td>
<td>0.4100</td>
<td>0.3890</td>
<td>0.3911</td>
</tr>
<tr>
<td>Thomson</td>
<td>0.6149</td>
<td>0.5900</td>
<td>0.6110</td>
<td>0.6089</td>
</tr>
<tr>
<td>TOTAL ERROR</td>
<td>0.0120</td>
<td>0.0378</td>
<td>0.0042</td>
<td></td>
</tr>
</tbody>
</table>
Conclusion and Perspective

• Conclusion
 – In the case of statistical dependencies, the algorithm keeps a good approximation to OLAP queries
 – Constant information exchanged on finite domains
 – Required memory in the worst case: $\Omega(N)$

• Perspective:
 – Application to RSS
 – Decision tree for the statistical model: discover the statistical dependencies
Thank you!

Questions & Answers?