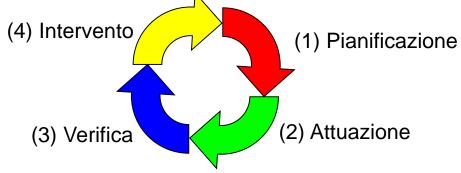
Sistemi Informativi

Prof. Matteo Golfarelli

Alma Mater Studiorum - Università di Bologna


L'innovazione nei SI

Per approfondimenti:

➤ Sistemi Informativi e aziende in rete cap. 2

"Nella storia di un'azienda non esistono momenti in cui non si discuta di come cambiare il modo di operare e interagire con il resto della società"

□ Il ciclo di Deming, sintetizza la logica secondo la quale gestire il ciclo di innovazione.

- □ Il termine "ciclo" vuole enfatizzare la ripetitività delle fasi che si devono continuamente ripetere durante tutta la vita dell'azienda.
- L'adozione di un ciclo di pianificazione e controllo è il primo passo per mantenere attuale il Sistema Informativo minimizzando i rischi di incoerenza e i costi di realizzazione.

Nella fase di pianificazione si collocano:

- ➤ la formalizzazione delle strategie in termini di servizio e di utilizzo delle tecnologie, che individuano gli obiettivi da conseguire e i principali terreni di intervento;
- ▶ la scelta delle priorità nell'attuazione dei vari interventi di automazione;
- ➤ la validazione dei progetti da attivare, che si baserà sulle priorità evidenziate e terrà conto dei vincoli di bilancio e delle relazioni esistenti tra i vari progetti;
- ➤ la definizione degli impegni e delle risorse necessarie, sia per i progetti, sia per le attività concorrenti di conduzione e manutenzione dei sistemi in esercizio;
- ➤ la stesura del documento di piano e la correlata definizione del budget e delle responsabilità, con l'approvazione da parte dei vertici.

Nella fase di realizzazione si collocano:

- ▶ l'elaborazione di studi di fattibilità per tutti i progetti che al momento della pianificazione mancano ancora del livello di approfondimento necessario alla decisione finale sull'investimento e all'avvio operativo;
- ➤ la definizione di progetti esecutivi e di piani operativi per i progetti previsti e per le attività di conduzione, manutenzione ed evoluzione dei sistemi;
- > l'acquisizione di prodotti e servizi dal mercato, con la gestione delle relative procedure;
- > la realizzazione dei progetti;
- > la conduzione operativa dei sistemi, con l'erogazione dei servizi informativi previsti, insieme alla correlata attività di manutenzione;

■ Nella fase di verifica si collocano:

- > la **gestione dei progetti** nelle loro varie componenti (attività, risorse, ecc.);
- la raccolta di informazioni sullo stato dei processi di servizio, con attività sistemistiche di raccolta e osservazione di misure ed eventi capaci di evidenziare e quantificare la situazione di efficacia ed efficienza dei servizi e dei processi per la loro erogazione;
- la diagnosi di servizi e processi che, sulla base delle informazioni raccolte, evidenzia i problemi identificandone le cause indicando le direzioni di intervento per il cambiamento;
- > la **raccolta di informazioni** sullo stato dei sistemi informativi automatizzati in termini di patrimonio tecnologico, patrimonio informativo, stato delle basi di dati, patrimonio applicativo, ecc.
- ▶ la diagnosi della risorsa informazione, in primo luogo come livello di qualità delle basi informative presenti, soprattutto in termini di correttezza, completezza e disponibilità delle informazioni. Questa diagnosi si può sviluppare in maniera integrata con la diagnosi dei processi, per le informazioni di pertinenza di specifici processi o aree tematiche, o in maniera indipendente, considerando la risorsa informazione come risorsa a disposizione di una pluralità di processi;
- ➤ la diagnosi dei sistemi informatici, in termini funzionali e organizzativi (servizi forniti, organizzazione interna, procedure), architetturali e tecnologici (stato sistemi e applicazioni, copertura), economici (costo dei servizi resi, peso della gestione e manutenzione).

- Nella fase di intervento si collocano:
 - ▶ l'elaborazione degli interventi di reingegnerizzazione dei processi di servizio, definendo in particolare i requisiti di fondo per lo sviluppo e la revisione dei sistemi applicativi;
 - l'individuazione di iniziative di reingegnerizzazione dei sistemi informatici che si concretizzano in programmi di adeguamento delle infrastrutture informatiche;

Definizione degli obiettivi

- □ Per assicurare il raggiungimento degli obiettivi proposti è necessario che questi vengano individuati esattamente e formalizzati in modo da stabilire responsabilità, tempi e priorità.
- □ A tale scopo ogni azienda redige il *piano di informatizzazione* che deve essere valutato e approvato ai livelli decisionali elevati al fine di assumere la corretta rilevanza.
 - ➤ **Piano strategico:** copre normalmente dai 3 ai 5 anni. È necessario per dare unitarietà alle specifiche iniziative evitando di costruire sistemi frammentati, incoerenti e tecnologicamente incompatibili. Contiene:
 - Obiettivi strategici dell'informatizzazione.
 - Architetture tecnologiche e applicative come quadro di riferimento complessivo.
 - Progetti di grande rilievo che richiedono elevati tempi di realizzazione e risorse.
 - > Piano operativo: ha validità annuale e definisce in maniera dettagliata gli interventi previsti dal piano triennale per l'esercizio in corso

Definizione degli obiettivi

- □ Le correzioni agli obiettivi raggiungibili nei due orizzonti temporali definiti da piano strategico e operativo deve essere valutata continuamente:
 - > Aggiungendo a ogni piano operativo degli elementi correttivi che incidono sul piano strategico.
 - Producendo annualmente un piano strategico a scorrimento in cui vengono focalizzati con maggior dettaglio impegni e attività relativi al primo esercizio (ad esempio le pubbliche amministrazioni hanno adottato questa soluzione).

Definizione degli obiettivi: top down VS bottom up

- Top down: partendo dagli obiettivi strategici dell'organizzazione si definiscono le caratteristiche generali del sistema informativo, le aree di intervento e gli specifici progetti per realizzarlo, verificandone la coerenza con le esigenze espresse dagli uffici:
 - > Maggiormente innovativo e discontinuo.
 - > Permette di identificare e pianificare soluzioni che rispondono a necessità di mutamenti radicali.
 - > Causa maggiori tensioni e rischi organizzativi.
- Bottom up: partendo dalle indicazioni delle diverse unità organizzative, che successivamente vengono integrate e razionalizzate, definendo contemporaneamente le priorità all'interno del budget complessivo
 - > Maggiormente conservativo
 - > Difficilmente riesce a produrre ipotesi di innovazione radicale, mirando sostanzialmente al miglioramento dell'esistente
 - > Presenta scarsi rischi realizzativi

Definizione degli obiettivi: top down VS bottom up

- Nella pratica si utilizzano normalmente approcci che realizzano un compromesso tra le due soluzioni teoriche estreme; uno schema molto diffuso è proposto nel seguito:
 - > Individuazione e diffusione delle strategie generali di evoluzione.
 - > Richiesta alle diverse unità dell'organizzazione di elaborare una loro proposta specifica, coerente con le linee generali.
 - > Integrazione delle varie proposte con verifica della coerenza globale rispetto agli obiettivi
 - > Definizione degli interventi infrastrutturali e definizione del piano finale

Il percorso di adozione nei Sistemi Informativi

Il percorso di digitalizzazione è incrementale e raramente permette di saltare dei passaggi

E' *rischioso*, *costoso* e *inutile* adottare soluzioni avanzate senza avere completamente sfruttato quelle semplici

- I manager non sono pronti
 - ✓ Non hanno il mindset giusto
- I dati non sono pronti
 - ✓ Non sono di qualità sufficiente
- I processi delle aziende non sono pronte
 - ✓ Non sono definiti in modo da appoggiarsi ai dati e di reagire a essi

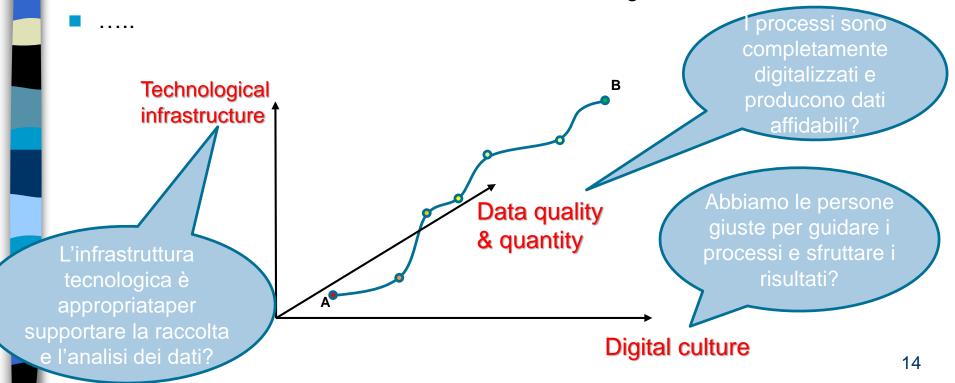
Dubitate dei consulenti e dei fornitori di software che offrono analisi avanzate se la vostra azienda sfrutta a malapena un foglio Excel

Creare aziende data-driven

Il termine *aziende data-driven* si riferisce ad aziende in cui le decisioni e i processi sono supportate dai dati

- Le decisioni si basano su conoscenze quantitative piuttosto che qualitative
- I processi e le conoscenze sono una risorsa dell'azienda e non vanno persi se i manager cambiano

La differenza tra una decisione basata sui dati e una buona decisione è un buon manager


L'adozione di una mentalità basata sui dati va ben oltre l'adozione di una soluzione di business intelligence e comporta:

- ✓ Creare una cultura dei dati
- ✓ Cambiare la mentalità dei manager
- √ Cambiare i processi
- ✓ Migliorare la qualità di tutti i dati

Creare aziende data-driven

Quello di digitalizzazione è un percorso che coinvolge tre dimensioni principali. Passare da A a B è un processo pluriennale fatto di obiettivi intermedi, ciascuno dei quali deve essere raggiungibile

- Deve risolvere un problema e apportare valore
- Deve essere realizzabile in un intervallo di tempo limitato (in genere meno di un anno)
- I costi devono essere economicamente correlati agli utili

L'innovazione dei SI

- L'innovazione dei SI è oggi sinonimo di informatizzazione ossia investimento in tecnologie informatiche
- L'investimento in tecnologie informatiche non deve essere tuttavia il fattore trascinante e il focus centrale del progetto secondo il ben noto paradigma del B.P.R. (Business Process Reenginering)
- □ Il concetto di B.P.R. nasce agli inizi degli anni '90 per impulso di Michael Hammer un professore di informatica del MIT che afferma:

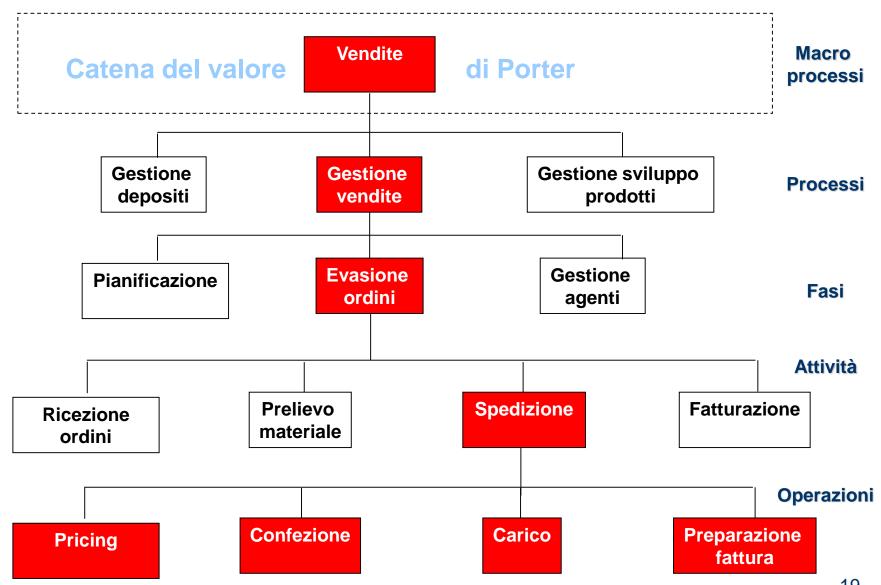
"... It is time to stop paving the cow paths. Instead of embedding outdated processes in silicon and software, we should obliterate them and start over. We should "reengineer" our businesses: use the power of modern information technology to radically redesign our business processes in order to achieve dramatic improvements in their performance."

B.P.R.

- La mera informatizzazione dei processi tradizionali porta a un aumento dell'efficienza degli stessi (funzione passiva dell'informatica), ma non può incidere sull'efficacia dell'azienda nel suo complesso (funzione attiva dell'informatica)
- □ II B.P.R. nasce come completo ripensamento e radicale ridisegno dei fondamentali processi di un'organizzazione alla luce delle potenzialità offerte dai nuovi strumenti informatici.
- L'accento è sulla discontinuità, sul salto nelle prestazioni, sulla completa assenza di vincoli di riprogettazione.
- La scelta della tecnologia/piattaforma informatica necessaria alla realizzazione dei nuovi processi è un elemento secondario rispetto al ripensamento dei processi aziendali
- La reingegnerizzazione dei processi deve essere effettuata con la consapevolezza delle nuove potenzialità offerte dai sistemi informatici
 - > Possibilità di creare mercati virtuali
 - Possibilità di monitorare in tempo reale le attività aziendali (es. catene di montaggio, andamento degli ordini, livello delle scorte)
 - **>**

I processi aziendali

Processo: insieme delle attività tra loro interrelate, finalizzate alla realizzazione di un risultato definito e misurabile che contribuisce al raggiungimento della missione dell'azienda.



- □ Il cliente è la persona o gruppo che richiede o usa un prodotto o servizio realizzato tramite il processo. Il cliente può essere interno od esterno all'azienda. Ogni output può avere molti clienti e viceversa
- Il processo e la sua "manutenzione" diventano gli elementi centrali del ciclo di innovazione dei SI
- Primo compito del progettista è quello di descrivere e classificare i processi
 - > Particolare rilevanza hanno le classificazioni normative, ossia quelle che descrivono la struttura dei processi come dovrebbe essere o effettivamente è nelle migliori aziende del settore (best practice)
 - > Le classificazioni normative vengono mappate nei principali pacchetti software
 - > Le classificazioni normative forniscono una informazione della situazione to be

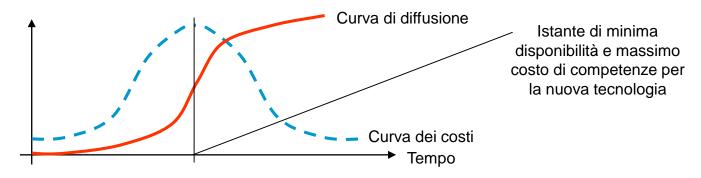
Descrivere i Processi

- La scomposizione dei processi dettaglia i processi per successivi livelli di approfondimento:
 - ➤ Macroprocesso: ne è un esempio la catena del valore di Porter. E' utile soprattutto nelle fasi iniziali per strutturare l'analisi e per individuare l'area di intervento
 - Processo: illustra a un livello ragionevolmente dettagliato le operazioni svolte da un'azienda.
 - Il macroprocesso "Sviluppo prodotti" si decompone in: "Concept" "Pianificazione" "Progettazione" "Prototipazione" "Test" "Ingegnerizzazione"
 - ► Fase: ha lo scopo di descrivere il modo in cui un processo è implementato. Una fase è una tappa di un processo
 - Il processo "Progettazione" comprende le fasi di: "Sviluppo specifiche" "Gestione del concurrent engineering*" "Realizzazione del value engineering**" "Documentazione delle specifiche di progetto" "Sviluppo prototipi" "Gestione delle richieste di brevetto"
 - Attività: è il livello adottato nella fase di studio dei processi. Sono determinate scomponendo ulteriormente le fasi secondo una logica sequenziale
- * Approccio sistematico alla progettazione di un prodotto/servizio che consideri contemporaneamente tutti gli aspetti del ciclo di vita dal concepimento fino all'eliminazione. Esso definisce simultaneamente il prodotto,il processo di produzione e tutti i processi ad esso correlati (es. distribuzione logistica).
- ** Analisi delle caratteristiche di un prodotto/servizio, svolta da personale qualificato, finalizzata a migliorarne l'efficacia, l'affidabilità, la qualità, la sicurezza e il costo.

Scomposizione gerarchica

Descrivere i Processi

- □ Le *variabili di progettazione* dei processi rilevanti ai fini della loro corretta analisi e progettazione sono:
 - Flusso delle attività: sequenza di attività attraverso cui il processo è svolto. Determina la durata e incide sul livello di servizio in base alle sua flessibilità. Assieme alle risorse umane e al livello della tecnologia determina la qualità dell'output. Può essere modellato con diagrammi che esprimano la sequenza: Activity Diagram (UML)
 - ➤ Organizzazione del processo: sia dal punto di vista della suddivisione operativa del lavoro, sia della struttura di coordinamento e controllo aziendale. Determina il livello di accorpamento delle attività. Il legame tra la struttura aziendale e i processi può essere modellata mediante diagrammi Linear Responsability Charting (LRC)
 - ➤ Competenze delle risorse umane: la cui adeguatezza è condizione fondamentale per la trasformazione a seguito dell'innovazione tecnologica
 - Sistema di misurazione e controllo delle prestazioni: necessario per governare il processo e per valutare gli attori aziendali che lo eseguono. Viene realizzando sistemi di Key Performance Indicator (KPI) o di Balanced Scorecard


Linear Responsability Charting

- □ Determina una visione tabellare della responsabilità organizzativa che integra quella dell'organigramma che non specifica il ruolo delle varie strutture nel processo considerato.
- □ Si ottiene incrociando le attività del processo (o le fasi ad un livello più aggregato) con le divisioni (o le loro parti). Il ruolo è indicato dalle etichette inserite nelle celle della griglia risultante:
 - ▶ D = decide, autorizza, ratifica
 - ➤ E = esegue
 - > A = partecipa a tempo parziale, fornisce assistenza operativa e supporto
 - ▶ I = è sistematicamente informato

	Filiale di vendita	Direzione commerciale	Direzione distribuzione	Magazzino prodotti	Spedizione	Contabilità clienti
Ricezione ordine	E	D	I	Ι		Α
Evasione degli ordini	I		D	E	I	
Spedizione			I	А	E	I
Fatturazione			I			E

Le risorse umane

- □ Le risorse umane determinano la differenza tra il risultato effettivo e il massimo teoricamente possibile da una configurazione del processo
- □ Le tecnologie innovative necessitano di figure professionali che non esistono in azienda e devono essere acquisite dal mercato o create internamente
- Il reperimento può essere costoso e complesso perché si manifesta per tutte le aziende contemporaneamente (quando il mercato si accorge della potenzialità offerta da una certa tecnologia).

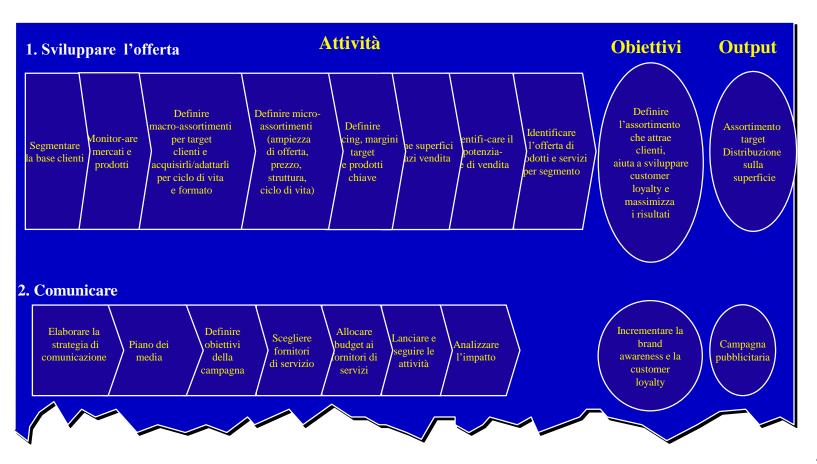
- La formazione degli utenti pone molti problemi gestionali
 - > Gli utenti devono superare l'avversione al cambiamento
 - > Spesso i vantaggi delle nuove soluzioni non sono subito evidenti
 - Il rischio maggiore è di introdurre un cambiamento maggiore delle capacità individuali di adattamento inducendo il rifiuto del nuovo sistema

Key Performance Indicator

□ Per verificare l'efficacia del processo è necessario misurare quantitativamente come questo soddisfa i requisiti del cliente. Per ogni processo i requisiti da soddisfare variano in base alla prospettiva, ossia in base al tipo del cliente:

Clienti	Requisiti percepiti a fronte dell'output (un impianto completato)						
•Committente (cliente)	· Impianto ben disegnato, completamente operativo, consegnato puntualmente						
•Senior Management •Utenti	 Efficacia dell'investimento Comfort, ambiente di lavoro che favorisca la produttività 						
•Fornitori	Specifiche complete e leadtimes adeguati						

Specifiche	Prestazioni Std						
•Elevata qualità della analisi di	•Attendibilità sulla applicabilità del sito:						
fattibilità •Stime accurate	100% •Costo dell'impianto: ± 3% del Budget						
•Rispetto dei tempi	•Tempi di consegna : ± 2% delle scadenze previste						


Key Performance Indicator

- □ La capacità di un processo nel soddisfare i requisiti dei clienti si misura tramite i Key Performance Indicator (KPI).
- □ Un KPI è un indicatore quantificabile dell'efficacia (grado di raggiungimento dell'obiettivo) e/o dell'efficienza (economicità nel raggiungimento dell'obiettivo) di un processo o di un sottoprocesso. Un KPI ha le seguenti caratteristiche:

 - ≽ è rilevabile
 - > è correlato con l'obiettivo di business interno di processo

Key Performance Indicator

Per poter "misurare" un processo tramite i KPI è necessario crearne la mappa ossia identificarne con esattezza, gli output, gli obiettivi e le attività principali:

Key Performance Indicator: proprietà

Nota la mappa di ogni processo strategico è possibile creare i KPI che devono essere definiti in base ai seguenti principi.

> Significatività

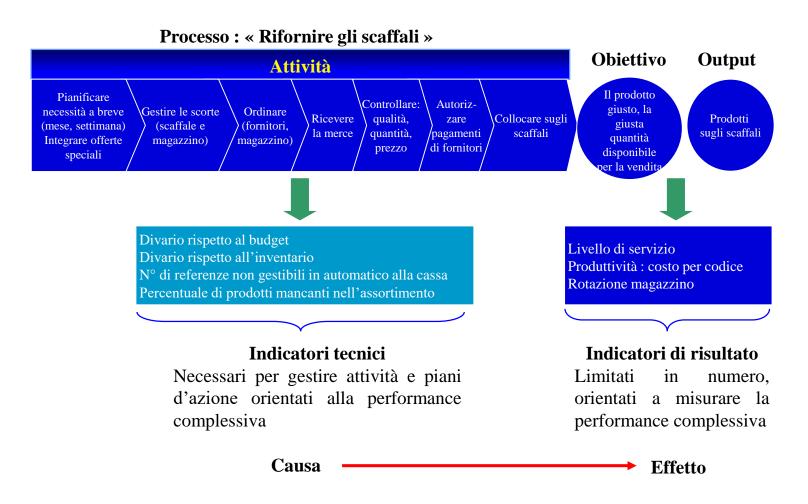
Collegamento con gli obiettivi strategici

> Controllabilità

- Misurazione di risultati che possono essere influenzati o azioni che possono essere intraprese
- Focalizzazione su un ben definito periodo di tempo (mese, trimestre, anno)

> Semplicità

- Facilità concettuale
- Pochi indicatori sono preferibili a un metrica complessa
- Possibilità di trade-offs con altri sistemi di misurazione


> Misurabilità

- Disponibilità dei dati
- Affidabilità e accuratezza dei dati

> Equilibrio

- Collegamento degli indicatori tecnici (ex-ante) con le attività di un processo
- Collegamento degli indicatori di risultato (ex-post) con gli obiettivi e gli output di un processo
- □ Gli indicatori di risultato misurano la performance a un momento dato, mentre gli indicatori tecnici misurano attività che influenzano la performance.

Key Performance Indicator: esempio

La selezione degli indicatori risultato deve precedere la scelta degli indicatori tecnici

La mappa degli indicatori

Un indicatore cattura un singolo aspetto del fenomeno (es. processo, divisione, azienda) che misura. Per misurare efficacemente il fenomeno è necessario definire una mappa integrata di KPI che copra diversi punti di vista a diversi livelli di dettaglio

> Fenomeno da misurare

Il processo o il soggetto da valutare

> Obiettivi

 Specifica quale scopo deve raggiungere il processo o il soggetto. Conoscendo gli obiettivi è possibile derivare quali sono gli aspetti più importanti da misurare per controllare il raggiungimento dell'obiettivo stesso

> Misure

Identificazione concreta ma ancora qualitativa degli aspetti da monitorare

> Stakeholder

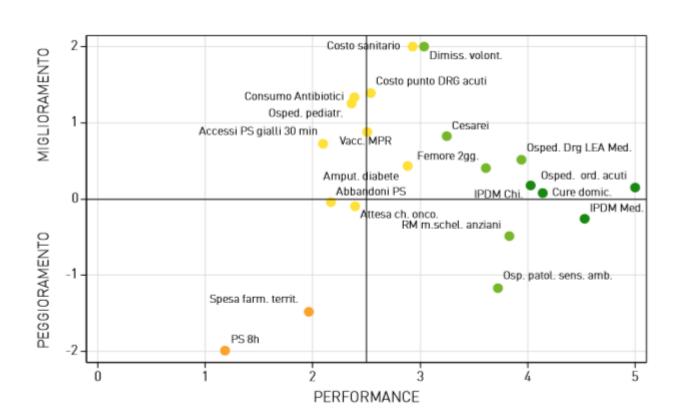
 Soggetti interessati ai KPI. Soggetti diversi sono interessati ad aspetti diversi dello stesso fenomeno e conseguentemente a indicatori diversi, tipicamente a diversi livelli di aggregazione

> Sorgente dati

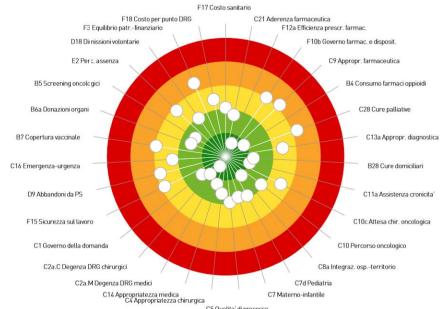
Determina l'effettiva calcolabilità dell'indicatore

> Formulazione

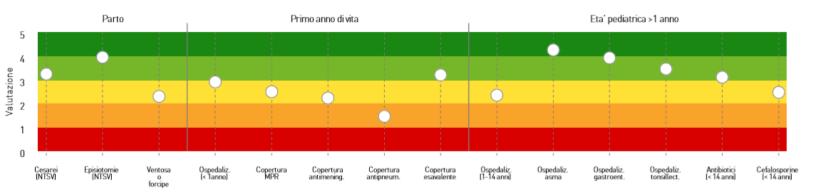
Specifica la formula di calcolo dell'indicatore


- □ Il criterio di semplicità si istanzia anche adottando opportune tecniche di visualizzazione.
- □ Gli indicatori di Sant'Anna (http://performance.sssup.it/netval) sono una mappa di centinaia di indicatori finalizzati a valutare le performance della sanità pubblica. Il sistema di valutazione è nato nel 2005 in Toscana ed è poi stato esteso nel 2008 ad altre Regioni.
- □ Di seguito alcuni esempi di KPI, il documento completo per il 2017 è consultabile sul sito del corso

- Il criterio di semplicità si istanzia anche adottando opportune tecniche di visualizzazione.
- □ Gli indicatori di Sant'Anna (http://performance.sssup.it/netval) sono una mappa di centinaia di indicatori finalizzati a valutare le performance della sanità pubblica. Il sistema di valutazione è nato nel 2005 in Toscana ed è poi stato esteso nel 2008 ad altre Regioni.
- □ Gli indicatori sono organizzati in categorie e sotto categorie, rilevati a livello di singola AUSL e raggruppabili per Regione, e per gruppi di Regioni


						Estre	emi delle fas	ce di valuta	zione			
Prevenzione collettiva	Pesatura	Pagina										
F15 Sicurezza sul lavoro												
F15.1.1 N. inchieste infortuni concluse con violazioni/ N. inchieste infortuni *												
F15.1.2 N. inchieste malattie professionali con violazioni/N. inchieste malattie professionali *												
F15.2 Copertura dell'attività ispettiva												
F15.2.1 N. aziende ispezionate/N. aziende con dipendenti	25%	140	0	2,3	2,3	5	5	7,8	7,8	10,5	10,5	12,8
F15.2.2 N. aziende delle costruzioni ispezionate/N. aziende delle costruzioni *												
F15.2.3 N. cantieri ispezionati/N. cantieri notificati	25%	141	0	5	5	14	14	23	23	32	32	41
F15.3 Efficienza produttiva												
F15.3.1 N. aziende ispezionate/N. personale UPG SPSAL	25%	142	0	16	16	37	37	58	58	79	79	100
F15.3.2 N. sopralluoghi/N. personale UPG SPSAL	25%	143	0	18	18	67	67	116	116	165	165	214
Governo e qualità dell'offerta												
B8 Malattie infettive												
B8.1 Proporzione malattie invasive batteriche con ceppo microbico tipizzato *	•											
B8.2 Tasso incidenza tubercolosi popolazione residente *												
B8.3 Percentuale Esami colturali per la diagnosi di tubercolosi polmonare *												
B8.4 Conferma colturale diagnosi di tubercolosi polmonare *												
C1 Capacità di governo della domanda												
C1.1 Tasso ospedalizzazione per 1.000 residenti standardizzato per età e sesso	0%	146	160	179	153	160	146	153	139	146	124	139
C1.1ro Tasso ospedalizzazione per 1.000 residenti standardizzato per età e sesso (ricoveri ordinari) *												
C1.1dh Tasso ospedalizzazione per 1.000 residenti standardizzato per età e sesso (day hospital) *												
C1.1.1 Tasso ospedalizzazione ricoveri ordinari acuti per 1.000 residenti standardizzato per età e sesso	50%	147	117	124	110	117	103	110	96	103	94	96
C1.1.1.1 Tasso ospedalizzazione DRG Medici acuti 0-64 anni per 1.000 residenti standardizzato per età e sesso												
C1.1.2 Tasso ospedalizzazione DH acuti per 1.000 residenti standardizzato per età e sesso *												
C1.1.2.1 Tasso ospedalizzazione DH medico acuti per 1.000 residenti standardizzato per età e sesso	50%	148	16	22	13	16	10	13	7	10	2	7
C1.1.2.2 Tasso ospedalizzazione DH chirurgico acuti per 1.000 residenti standardizzato per età e sesso *												
C1.1.2.2.1 Tasso di prestazioni ambulatoriali chirurgiche per 1.000 residenti standardizzato per età e sesso												
C1.1.3 Tasso ospedalizzazione post acuti per 1.000 residenti standardizzato per età e sesso												
C1.3 Posti letto pro-capite **												

■ Lo scatter plot evidenzia i trend di miglioramento e peggioramento rispetto alla rilevazione precedente


Mappa di performance e trend (2016-2017)

□ Il bersaglio evidenzia graficamente la performance su gruppi omogenei e disomogenei di KPI Valutazione della performance 2017

☐ II pentagramma evidenzia la performance di un processo

PERCORSO MATERNO INFANTILE

Overall Equipment Effectiveness

OEE è il principale KPI per misurare la capacità di produzione di un'azienda manifatturiera. È spesso usato nella Lean Manufacturing per raggiungere l'eccellenza operativa.

Availability x **Performance** x **Quality**

- Availability [0;1]: Percentuale di tempo lavorato rispetto al tempo disponibile.
- Performance [0;1]: Percentuale di pezzi effettivamente lavorati rispetto ai pezzi teoricamente lavorabili. Nella pianificazione vengono calcolati i pezzi che possono essere lavorati a regime ottimale, qualsiasi riduzione di queste prestazioni indica una diminuzione della produzione.
- Quality [0;1]: Rapporto percentuale dei pezzi conformi sul totale dei pezzi prodotti. In questo modo, si evidenziano i cali di produzione legati a scarti o rilavorazioni, che incidono sull'inefficienza complessiva.
- Il calcolo dettagliato/automatico dell'OEE richiede SCADA e MES

OEE Example

- Planned batch of production: 5.300 pieces.
- Theoretical processing time per piece: 87 secs.
- Working shifts: 3 x 8h working shifts per day, 5 days per week.
- Theoretical working time (100% efficiency):

 $(5.300pcs \times 87secs) / (8h \times 3.600secs) = 16,01$ working shifts

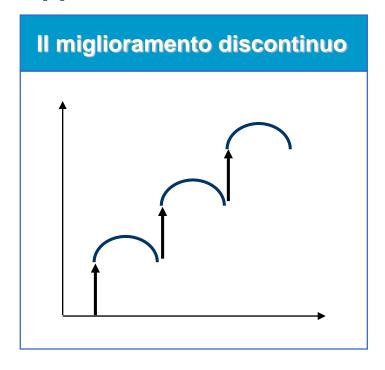
- Machinery set up (first working shift only)= 90 mins
- Weekly Machinery start up (monday only): 35 mins
- During working shift processing
 - -Manual checks on the machinery state: 24mins overall
 - -12 alarms (safety, fault, pressure check, etc): 24mins overall

Availability OEE =

 $(60 \text{mins } \times 8 \text{h-} 90 \text{mins-} 35 \text{mins-} 24 \text{mins-} 28 \text{mins}) / (60 \text{mins } \times 8 \text{h}) = 63\%$

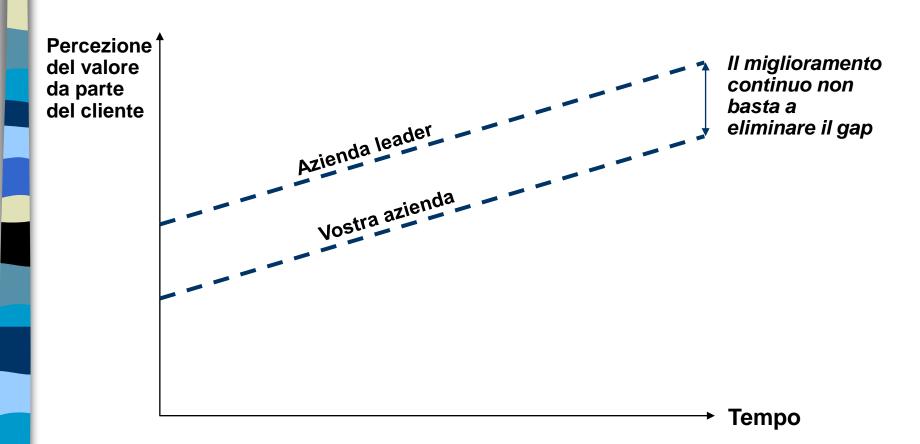
OEE Example

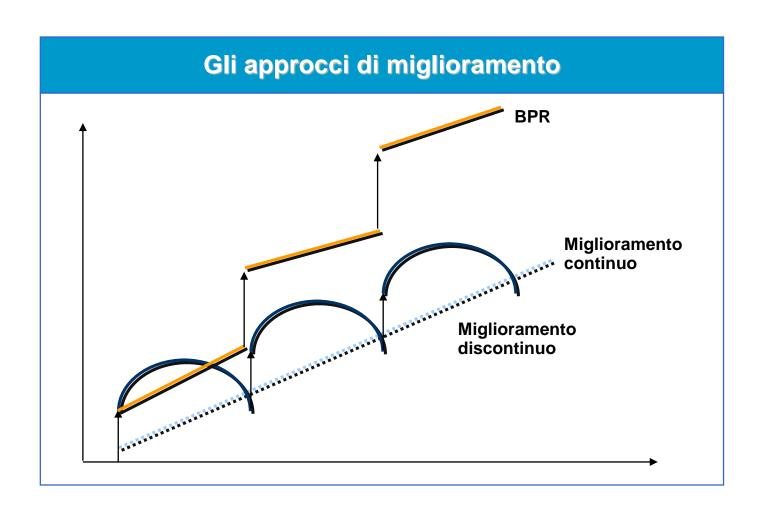
Theoretical machining time per piece	secs	87			
		Shift 1	Shift 2	Shift 3	Day
Theoretical working shift duration	mins	480	480	480	1440
Downtime	mins	35	11	20	66
Set up	mins	90	0	0	90
Tool replacement	mins	0	27	0	27
Alarms	mins	28	11	85	124
Maintenance	mins	0	21	0	21
Manual checks	mins	24	28	31	83
Overall lost time	mins	177	98	136	411
Actual availability	mins	303	382	344	1029
Availability OEE		63%	80%	72%	71%
Theoretical worked parts	pcs	209	263	237	709
Actual worked parts	pcs	181	250	225	656
Performance OEE		87%	95%	95%	93%
Scrapped parts	pcs	4	4	7	15
Reworked parts	pcs	1	1	2	4
Overall faulty parts	pcs	5	5	9	19
Quality OEE		97%	98%	96%	97%
Working Shift OEE		53%	74%	65%	64%


Costruiamo una mappa di KPI

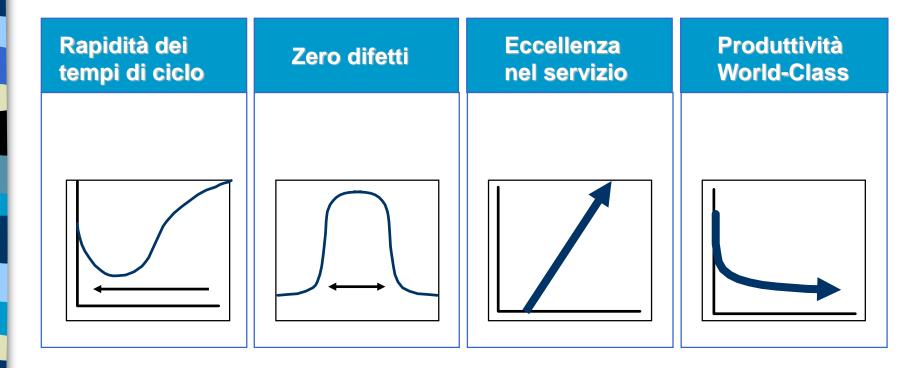
Business Process Reengineering

Il miglioramento incrementale: approccio occidentale vs. approccio giapponese

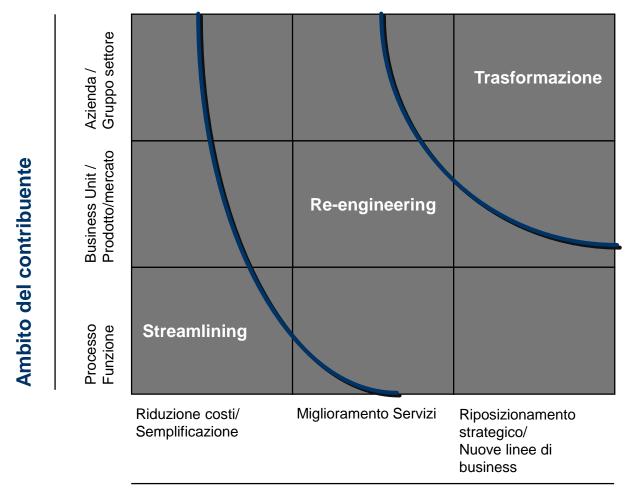

Approccio occidentale


Approccio Giapponese

Perché il miglioramento incrementale non basta



Il Business Process Reengineering permette di realizzare "il salto di qualità" (Breakthrough)



Cos'è il Business Process Re-engineering

□II BPR è la completa revisione dei processi aziendali al fine di massimizzarne il valore derivante dalle singole componenti, attraverso interventi sia di riduzione dei costi sia di massimizzazione dell'efficacia

Le varie modalità di reingegnerizzazione variano in funzione dello scopo e dell'ampiezza del cambiamento

Grandezza cambiamento

Il ridisegno dei processi può focalizzarsi su tre tipi di cambiamento

Streamlining

Approccio incrementale sui processi

Ricerca il miglioramento delle prestazioni modificando il processo attuale. Es.:

- Modificare le sequenze
- Semplificare le attività
- Automatizzare le attività
- Ridefinire input ed output
- Bilanciare i carichi di lavoro

• ...

Business Process Reengineering

Approccio radicale sui processi

Ricerca un cambiamento radicale del processo attuale. Es.:

- Eliminare e combinare con un altro processo
- Ricostruire da zero
- Introdurre competenze completamente nuove
- Implementare tecnologie avanzate che impattano sull'intero processo
- Ridisegnare il sistema premiante

•

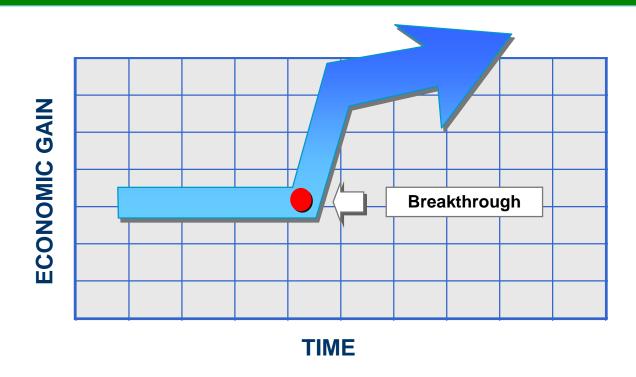
Enterprise Transformation

Approccio radicale sul business

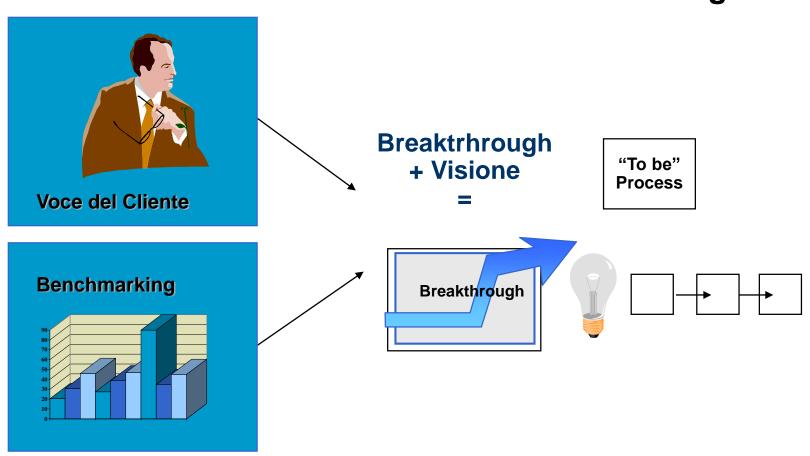
Ricerca una riconfigurazione del business.:

- Eliminare/sviluppare combinazioni prodotto/mercato
- Sviluppare alleanze strategiche
- Ribilanciare il portafoglio di business
- Riallineare i processi di supporto al nuovo mix di processo

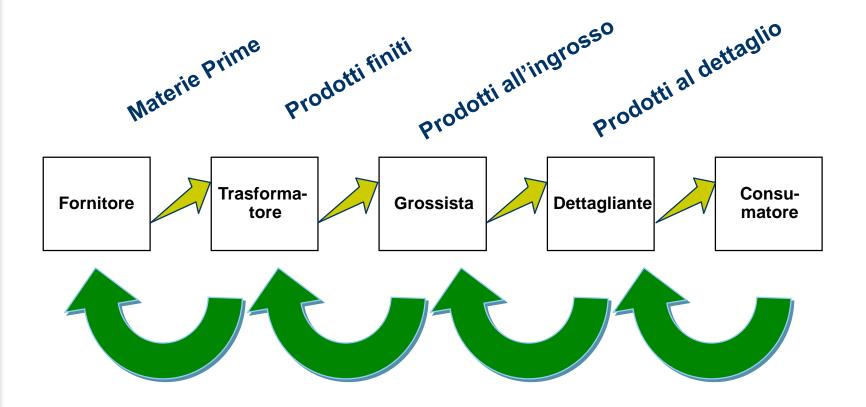
• ...



L'identificazione dei Breakthrough


Esistono dei livelli di performance di un processo (in termini di costo, qualità, servizio o tempi di ciclo) il cui raggiungimento comporta un miglioramento significativo e più che proporzionale dei benefici (costo, qualità, servizio, tempi di ciclo)

La determinazione dei Breakthrough



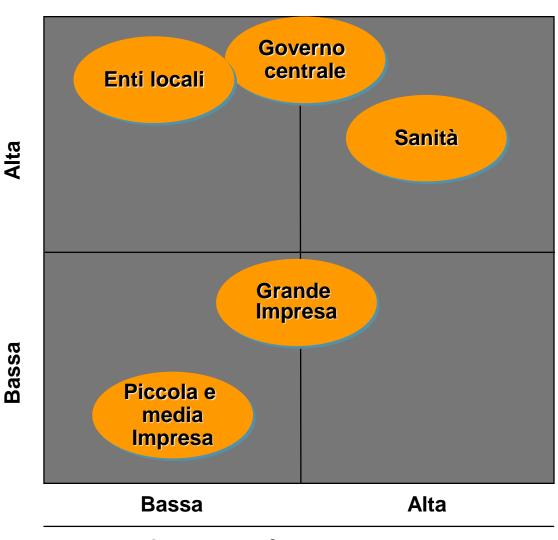
Vi sono due modalità fondamentali per l'identificazione dei Breakthrough

La "voce del cliente" ed il Benchmarking

La "voce del cliente" è un metodo di rilevazione strutturato e approfondito delle necessità e delle aspettative del cliente

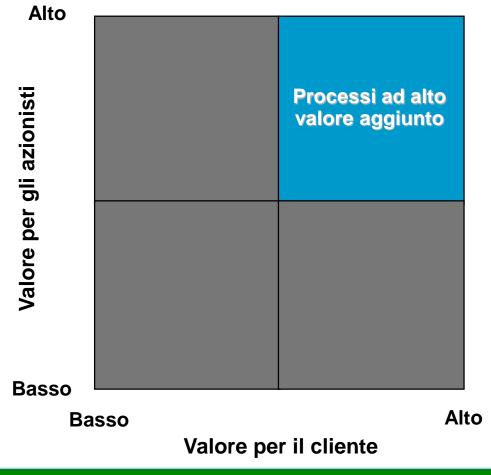
Che succede se non si include la Voce del cliente in un progetto BPR?

- Potenziale rischio per l'organizzazione di non offrire ciò che il cliente vuole quando lo vuole
- Possibile perdita di posizionamento e in prospettiva perdita di clienti chiave
- Rischio di focalizzare il BPR su aree non a valore per il cliente
- Ambiente di lavoro fra i clienti interni stressante


Il benchmarking è un processo di comparazione

- Attraverso il benchmarking l'organizzazione compara le performance interne con standard esterni di eccellenza
- Obiettivo del benchmarking è ottenere e mantenere una performance best-in-class attraverso iniziative di miglioramento
- L'osservazione dell'approccio di altre organizzazioni a un problema o a un processo può catalizzare soluzioni innovative
- Il benchmarking può notevolmente accelerare un processo di cambiamento con un'efficacia di comunicazione considerevole

Non tutti i business sono uguali in relazione alle difficoltà del ridisegno


ESEMPLIFICATIVO

Complessità socio-politica

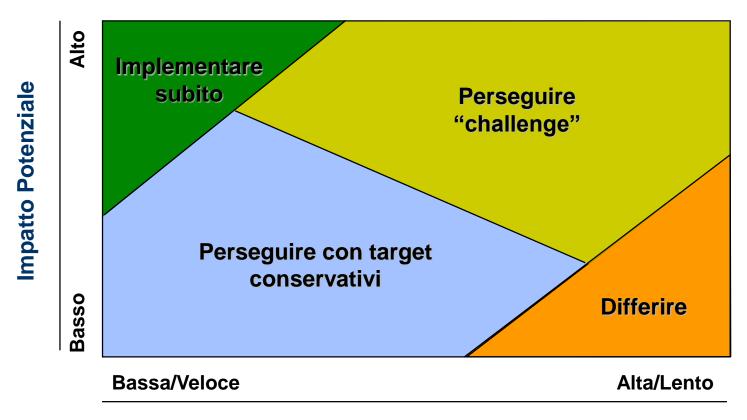
Complessità organizzativa

E' fondamentale focalizzarsi sui processi che contribuiscono maggiormente alla creazione del valore

Attenzione: non tutti i processi inefficienti e distorti sono necessariamente ad alto valore aggiunto

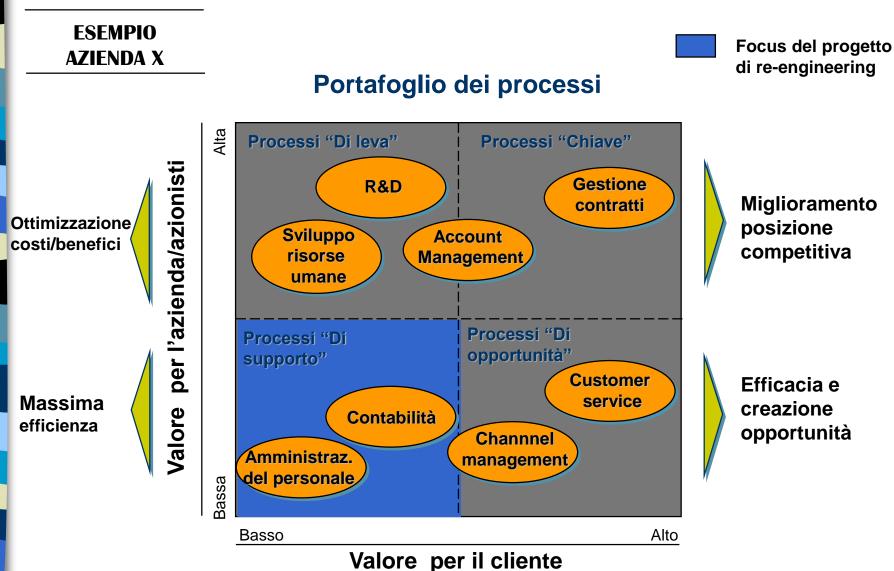
Passi necessari

Identificazione dei processi necessari per soddisfare i requisiti strategici e del cliente


Definizione delle priorità sui processi sulla base dell'impatto su mercato e risultati di business

Reengineering dei processi per rimuovere le barriere alla performance — con effetto su *tutti* gli aspetti dell'organizzazione

Implementazione del cambiamento supportato da solide verifiche di fattibilità


Instituzionalizzazione delle misure per il miglioramento continuo

La scelta dei processi sui quali intervenire deve tenere conto dell'impatto potenziale, della difficoltà di implementazione e del tempo disponibile per la realizzazione

Difficoltà di implementazione/ tempo di realizzazione

La scelta dei processi sui quali intervenire dipende dagli obiettivi della reingegnerizzazione

Strumenti analitici

Nuovi strumenti analitici aiutano a concepire nuovi modi di organizzare il flusso di lavoro, per esempio:

Azienda estesa

Gestire i processi oltre i confini organizzativi dell'impresa

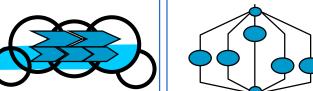
Parallelizzazione

Sostituire processi sequenziali con processi parallelizzati

Riallocazione

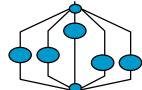
Riposizionare esperti funzionali incorporando l'expertise in sistemi e strumenti

Eliminazione

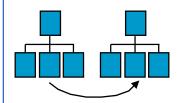

Verificare la necessità di attività e funzioni tradizionali; eliminare steccati

Cicli di miglioramento continuo

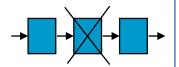
Costruire cicli di feedback per stimolare il miglioramento di performance


Tecniche BPR: soluzioni organizzative per il ridisegno

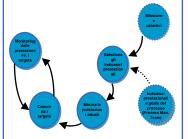
Azienda Estesa


Estendere i processi oltre i confini organizzativi

Parallelismi


Sviluppare le attività in parallelo anziché in sequenza

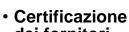
Riallocazione

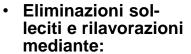

Riallocare responsabilità, attività e specializzazioni

Eliminazione

Eliminare le attività a basso valore

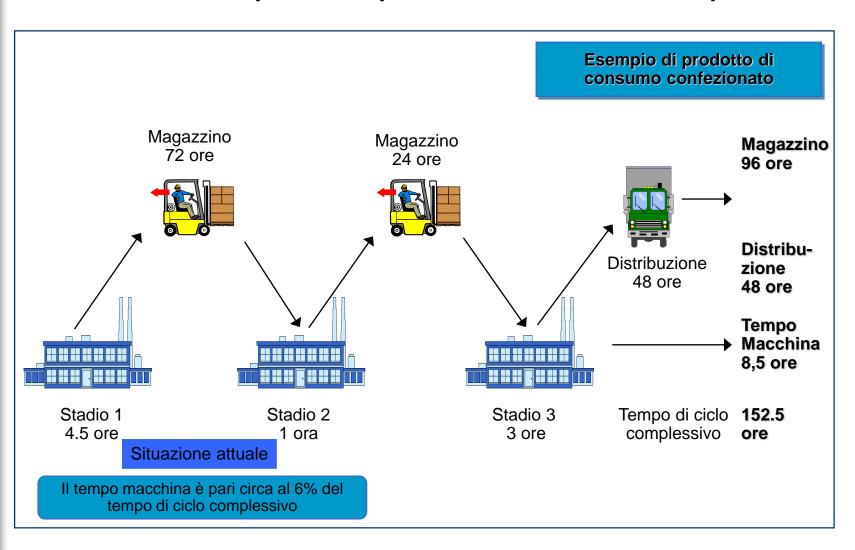
Ciclo di miglioramento continuo


Attivare anelli di feedback per stimolare il miglioramento continuo

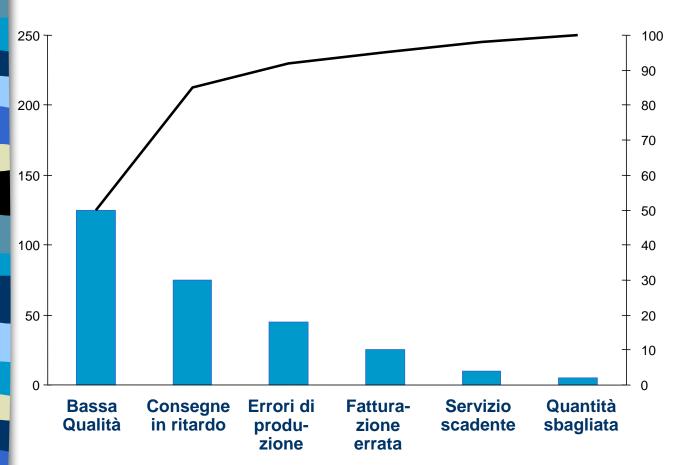

- fornitori
- Condivisione informazioni
- Team di processo misti

- Disegno di concorrenze

- dei fornitori Introduzione
- dell'ordine via remoto da parte del cliente


- -produzione pull
- -qualità disegno
- -manutenzione preventiva
- Monitoraggio livelli di servizio verso strutture interne
- Confronto con organizzazioni simili

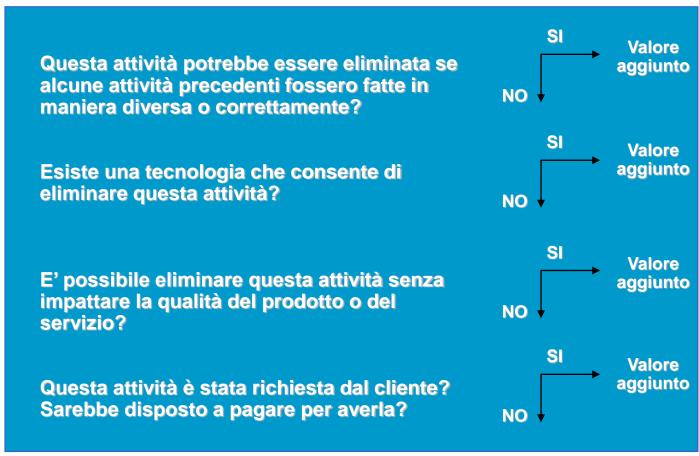
Tecniche BPR: l'analisi dei tempi ciclo


ESEMPLIFICATIVO

L'analisi dei tempi di ciclo permette di identificare tempi morti

Tecniche BPR: identificazione delle aree di miglioramento

L'analisi Pareto facilita l'individuazione delle aree "a maggior impatto"


- Il diagramma di Pareto è semplicemente un grafico a barre
- Ogni barra rappresenta la causa di problemi
- L'altezza della barra indica la frequenza o l'importanza del problema
- Le barre sono ordinate da sinistra a destra in ordine descrescente

Il diagramma di Pareto illustra graficamente la regola del 80:20

Tecniche BPR: l'analisi della creazione del valore

Permette di identificare le attività che "aggiungono valore al cliente" attraverso alcune domande chiave

Domande per l'Analisi a valore aggiunto

L'approccio organizzativo per processi cambia il ruolo dell'Information Technology

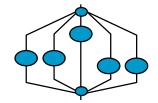
L'Information Technology va strategicamente interpretata come fattore di successo ottimale per le prestazioni dei processi di business

Catena del Valore dell'Azienda

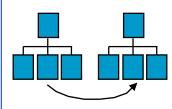
Impatti tipici

- Puntuale customer information
- Reporting qualitativo
- Controllo efficace delle vendite
- Gestione finanziaria automatizzata
- Controllo di gestione efficace
- Utilizzazione ottimale delle macchine
- Gestione ordini efficiente
- Logistica integrata
- Data base consistente
- Disponibilità permanente dei sistemi

• ...


Le tecnologie informatiche sono parte integrante delle tecniche di reengineering ...

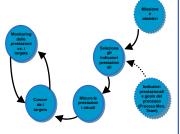
Azienda Estesa


- Communication (LAN, WAN)
- EDI
- Internet / Intranet / Extranet
- E-Commerce

Parallelismi

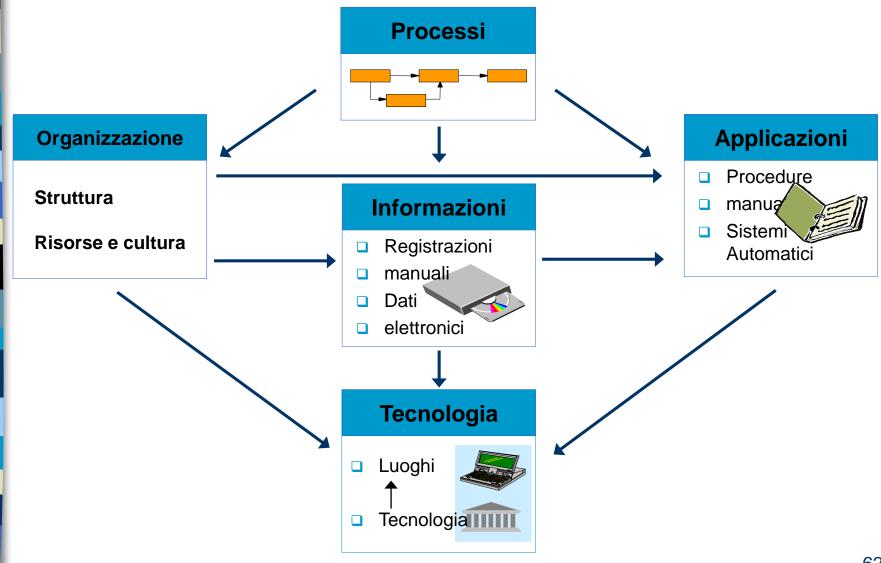

- Workflow
- Groupware
- Cooperative processing
- Networking

Riallocazione


- Data Base distribuiti
- ERP
- Architetture client / server
- Soluzioni Web

Eliminazione

- Automazione funzioni
- Integrazione applicazioni


Ciclo di miglioramento continuo

- Data Warehouse
- DecisionSupport System
- Business Intelligent System

Tipo di tecnologia informatica "abilitante"

... ma devono essere sviluppate contestualmente con il "modello d'impresa"

Il ridisegno dei processi: un modello in 6 fasi

Condivisione obiettivi aziendali

2 Definizione

Definizione Analisi di base e Benchmark

3

4

Sviluppo dei concetti innovativi

5

Progettazione del cambiamento 6

Pianificazione dell'implementazione

Early Wins

Realizzazione del cambiamento

Risultati immediati e tangibili sono essenziali

- Giustificano l'impegno delle risorse
- Determinano la credibilità del processo di gestione del cambiamento
- · Forniscono la prova che il management è impegnato nel processo di cambiamento
- Creano entusiasmo tra le persone

1. Condivisione degli obiettivi di business

Attività principali

- Documentare la visione aziendale di strategie ed obiettivi
- Rilevare piani di sviluppo, eventi chiave già pianificati
- Rilevare ruolo e attese dell'Azienda, dei clienti e "partecipi " del processo

Risultati

- Quadro di riferimento degli orientamenti strategici e obiettivi di sviluppo
- Linee guida per lo sviluppo dell'attività
- Modello di interrelazione volumi, costi, servizio.

2. Definizione delle linee guida

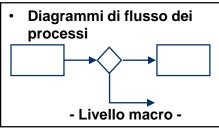
Attività principali

- Selezionare i processi di gestione da considerare
- Identificare gli skill necessari e selezionare le risorse
- Strutturare i team e pianificare le attività
- Sviluppare e promuovere il programma di comunicazione

Risultati

- Quadro processi e priorità
- Macro target definiti
- Risorse da coinvolgere e composizione dei team
- Struttura operativa del programma
- Approccio alla comunicazione, con programma e scopi

3. Analisi di base e benchmark



Attività principali

- Analizzare i processi attuali ed i sottoprocessi chiave
- Confrontare i processi con maggiore potenziale di miglioramento con le Best Practice

 Analizzare e definire le priorità per i processi chiave ed i sottoprocessi

Output fondamentali

Mappatura dei processi					
Processi	Portatori di interesse				

XXXXXXXXXX

 Le opportunità e le necessità di miglioramento

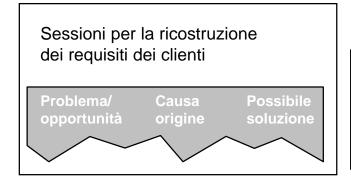
• I rischi competitivi

Gli output dei processi

Output	Costo	Valore
XXX	XXX	XXX
XXX	XXX	XXX
XXX	XXX	XXX

Il posizionamento degli output sulla matrice costovalore

Costo


Valore

3. Analisi di base e benchmark (cont.)

Attività principali

Output fondamentali

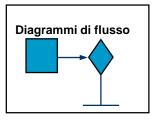
 Sviluppare processi interni ed esterni per la definizione dei requisiti dei clienti

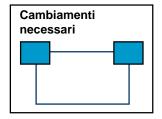
 Definire le priorità relative alle opportunità di miglioramento

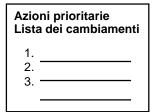
Lista a	aggregat	a delle	opportu	nità
Area progetto	Benefici	Costi	Rischi	Rilevanza strategica
XXX	XXX	XXX	XXX	XXX
XXX	XXX	XXX	XXX	XXX
XXX	XXX	XXX	XXX	XXX

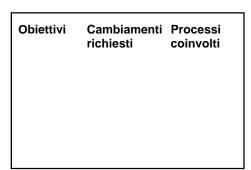
- Crescita della domanda
- Obiettivi di redditività
- Servizi condivisi

4 e 5. Generazione di concetti innovativi e progettazione del cambiamento




Attività principali


- Sviluppare la visione di un processo eccellente
- Disegnare le opzioni per i nuovi processi


 Definire i requisiti in termini di risorse e tecnologia

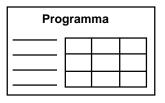
Output fondamentali

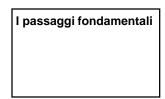
Interfacce critiche dei nuovi processi								
Processi	Processi							
	Α	В	С	D	E	F	G	
Α	С	•		•		•		
В		•			•			
С			•					

Richies	ste di umane

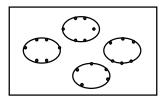
Richieste di investimenti	

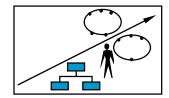
Disegno dei futuri macro processi								
Processi	Portatori di interesse							

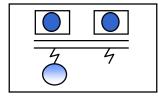

6. Pianificare l'implementazione

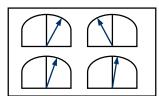


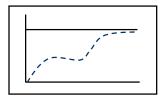
Attività principali


- Preparare e concordare piano d'implementazione
- Accordarsi sulla futura struttura organizzativa post-implementazione
- Accordarsi sull'architettura ed il piano di migrazione
- Allineare i criteri di misurazione delle prestazioni


Risultati

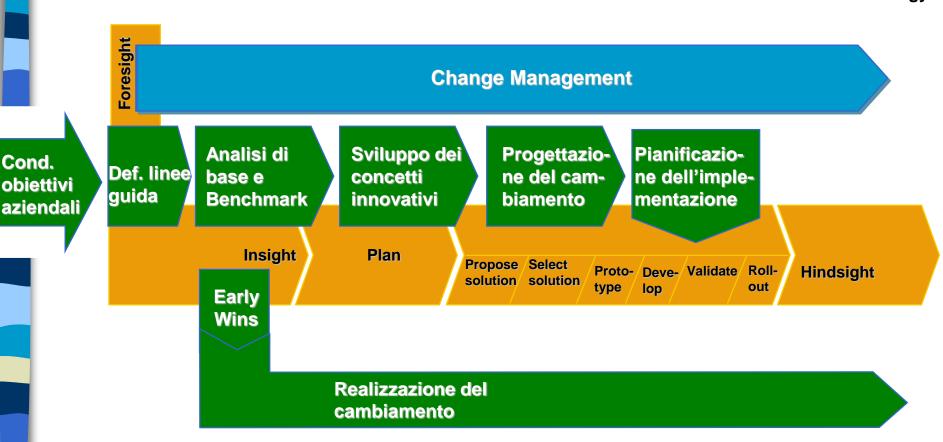






La realizzazione del cambiamento è un processo continuo

Attività chiave


- Condurre incontri frequenti sullo stato di avanzamento
- Impiegare le risorse, in modo flessibile, in funzione delle necessità realizzative
- Incoraggiare, supportare e guidare tutti coloro che stanno lavorando per il processo di cambiamento
- Monitorare i sistemi di misurazione dei processi
- Individuare le azioni di miglioramento delle prestazioni
- Comunicare i risultati a tutta l'organizzazione

Risultato

- Gestione del processo di cambiamento
- Il raggiungimento dei risultati viene monitorato e comunicato

In un programma di trasformazione aziendale il "process reengineering" va integrato con la realizzazione dei nuovi supporti informatici e la gestione del cambiamento ...

BPR

Information Technology