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Data Science & Data Scientist: a definition
Data Science is the extraction of knowledge from data. It employs techniques and theories drawn from 
many fields within the broad areas of statistics and information technology

The data scientist is an expert of such areas with a strong aptitude in understanding the business and 
the data. He is capable of transforming the information hidden in the data in a competitive advantage. 
His final goal is to create new business models in the so-called data-driven economy

Data Science is an evolution of Business Intelligence and it overcomes the following limitations:

2

Business Intelligence Data Science

Works on Structured data only Works on Structured and unstructured data

Requires a complex/rigid ETL process Is based on a more flexible/agile/extemporary
extraction process

Implemented by Computer Engineers Exploited by 
Business Users and data analysts

Implemented and exploited by Data Scientists and 
Data Enthusiasts

Implemented on Relational DBMS Implemented on Big Data and NoSQL technologies



Why data science?
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Where does Data science come from?
The enabler factors of this revolution are:
• Pressing user needs: users ask for quantitative information in the data-driven economy
• Data Availability: Internet of Things
• Computational power: Big Data Technologies
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Where does Data science come from?
The enabler factors of this revolution are:
• Pressing user needs: users ask for quantitative information in the data-driven economy
• Data Availability: Internet of Things
• Computational power: Big Data Technologies

A personal experience that perfectly fits this concept is Technogym a worldwide leading company in 
the Wellness market
• Adds software and sensors to its machines that are stand-alone or connected at the Facility level
• Builds a social environment (social network, Apps) providing additional services to its customers
• Moves its software framework to the cloud
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Bilions of data about each single Physical Activity Step is available for:
Customer profiling, Scientific analysis, Drop-Out prevention, etc.



Where does Data science come from?
The enabler factors of this revolution are:
• Pressing user needs: users ask for quantitative information in the data-driven economy
• Data Availability: Internet of Things
• Computational power: Big Data Technologies
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Where does Data science come from?
The enabler factors of this revolution are:
• Pressing user needs: users ask for quantitative information in the data-driven economy
• Data Availability: Internet of Things
• Computational power: Big Data Technologies
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Managers need quantitative information
First DW projects start in USA companies



Where does Data science come from?
The enabler factors of this revolution are:
• Pressing user needs: users ask for quantitative information in the data-driven economy
• Data Availability: Internet of Things
• Computational power: Big Data Technologies
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DWing lands in Italy too



Where does Data science come from?
The enabler factors of this revolution are:
• Pressing user needs: users ask for quantitative information in the data-driven economy
• Data Availability: Internet of Things
• Computational power: Big Data Technologies
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Google file sytem was devised

Map Reduce was devised at Google



Where does Data science come from?
The enabler factors of this revolution are:
• Pressing user needs: users ask for quantitative information in the data-driven economy
• Data Availability: Internet of Things
• Computational power: Big Data Technologies
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Hadoop 1 was devised to support Nutch
– the Apache web crawler



Where does Data science come from?
The enabler factors of this revolution are:
• Pressing user needs: users ask for quantitative information in the data-driven economy
• Data Availability: Internet of Things
• Computational power: Big Data Technologies

12
90 92 94 96 98 00 02 04 06 08 10 12 14 16 18 20

DJ Patil states: "Data Scientist is The 
Sexiest Job of the 21st Century”



Where does Data science come from?
The enabler factors of this revolution are:
• Pressing user needs: users ask for quantitative information in the data-driven economy
• Data Availability: Internet of Things
• Computational power: Big Data Technologies
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Mongo DB was released
NoSQL identifies distributed DBMSs not

providing ACID properties



Where does Data science come from?
The enabler factors of this revolution are:
• Pressing user needs: users ask for quantitative information in the data-driven economy
• Data Availability: Internet of Things
• Computational power: Big Data Technologies
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Yahoo announced its Hadoop cluster 
grew up to 42,000 nodes

The Data Enthusiast term was coined



Where does Data science come from?
The enabler factors of this revolution are:
• Pressing user needs: users ask for quantitative information in the data-driven economy
• Data Availability: Internet of Things
• Computational power: Big Data Technologies
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Hadoop 2 was released
The platform turns to more generic purpose



Big Data: the renaissance of Business 
Intelligence
The main effect of Big Data raise is a renewed interest in the Data Analysis. While the technological gap 
can be bridged quickly, bridge the cultural gap for Data Analysis can take years (or even a new 
generation of managers).
• Most of the Big Data-related technologies are NEW
• Most of the Big Data-related techniques are already KNOWN and have been adapted to new 

technologies

16



17

A Time Line for Data Analysis

1998 2003 2008

DM & ML

Big Data

Analytics

DW & OLAP

time

BI 1.0 BI 2.0

A
d

o
p

ti
o

n
le

ve
li

n
 c

o
m

p
a

n
ie

s 



A Time Line for Data Analysis

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025



RDBMS

A Time Line for Data Analysis

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

1970 E.F. Codd (IBM) publishes the relational model
“It provides a means of describing data with its natural structure only--that is, without superimposing any additional structure for 

machine representation purposes. Accordingly, it provides a basis for a high level data language which will yield maximal 
independence between programs on the one hand and machine representation on the other.”(Codd 1970)



RDBMS

A Time Line for Data Analysis

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

1974 SQL language was born - Donald Chamberlin (IBM)
A standard language for querying relational DBMS



RDBMS

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

1976 Peter Chen publishes the Entity Relationship model
A conceptual model for relational databases

A Time Line for Data Analysis



RDBMS

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

1979 Larry Ellison launches the first ORACLE’s DBMS release

A Time Line for Data Analysis



RDBMS

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

1982 TCP/IP an the word "Internet" are defined

A Time Line for Data Analysis



RDBMS

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

1991 Il CERN announces internet

A Time Line for Data Analysis



RDBMS

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

1994 Jeff Bezos opens Amazon

A Time Line for Data Analysis



RDBMS

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

1996 10 milions of computers are connected to the Internet

A Time Line for Data Analysis



RDBMS

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

1998 Larry Page and Sergey Brin open Google

A Time Line for Data Analysis



RDBMS

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

2003 Google File System was born

Big Data

A Time Line for Data Analysis



Big Data

RDBMS

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

2004 map Reduce (Google) was born
A distributed computation programming language

A Time Line for Data Analysis



Big Data

RDBMS

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

2005 Hadoop 1 (Apache) was born
Based on Google papers, it is a Big Data open source platform for the web crawler Nutch

A Time Line for Data Analysis



Big Data

RDBMS

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

2006 Amazon Web Services (AWS) was born
everyone is talking about cloud computing (conied on 1997)

A Time Line for Data Analysis



Big Data

RDBMS

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

2008 Data Science becomes trendy
DJ Patil states: "Data Scientist is The Sexiest Job of the 21st Century”

A Time Line for Data Analysis



NoSQL

Big Data

RDBMS

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

2008 Cassandra (Facebook) was born
An open source non-relational DBMS (wide column)

A Time Line for Data Analysis



NoSQL

Big Data

RDBMS

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

2008 Voldemort (Linkedin) was born
An open source non-relational DBMS (key-value)

A Time Line for Data Analysis



NoSQL

Big Data

RDBMS

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

2009 MongoDB was born
An open source non-relational DBMS (document-based)

A Time Line for Data Analysis



NoSQL

Big Data

RDBMS

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

2009 IoT was born
According to CISCO more things than persons are connected on Internet

A Time Line for Data Analysis



NoSQL

Big Data

RDBMS

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

2011 HIVE was born
A relational DBMS on a Big Data platform

A Time Line for Data Analysis



Big Data: a definition
Big Data are dataset with the following features, not necessarily all!
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Big Data: volume
Volume: Terabyte or Petabyte so that they exceed the the processing capacity of conventional

database systems.
• Some examples:

• Walmart: 1 million transaction per hour (2010)
• eBay: data throughput reaches 100 petabytes per day (2013)
• Facebook: 40 billion photos (2010); 250PB data warehouse with 600TB added to the warehouse every

day (2013)
• 500 millions of tweet per day (in 2013)
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terabyte TB 1012 1 HD

petabyte PB 1015 1000 HD

exabyte EB 1018 1 milion of HD

zettabyte ZB 1021 1 bilion of HD

The hard disk of a desktop PC 
can store up to 1 TB



Big Data: velocity
Velocity: mobile and personal devices, IoT digital transactions produce data at a rate higher than 

traditional information systems
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What does it
happen in internet 
in 60 seconds?



Big Data: velocità
Velocità: device mobili e transazioni IoT producono dati con una frequenza superiori a quella dei

sistemi informativi tradizionali. 
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Big Data: velocità
Velocità: device mobili e transazioni IoT producono dati con una frequenza superiori a quella dei

sistemi informativi tradizionali. 
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Big Data: velocità
Velocità: device mobili e transazioni IoT producono dati con una frequenza superiori a quella dei

sistemi informativi tradizionali. 
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Big Data: Variety
• Variety: Data is extremely heterogeneous, in the format in which are represented, but also and in 

the way they represent information, both at the intensional and extensional level
• E.g., text from social networks, sensor data, logs from web applications, databases, XML 

documents, RDF data, etc.
• Data format ranges therefore from structured (e.g, relational databases) to semistructured

(e.g., XML documents), to unstructured (e.g., text documents)

• Veracity: the quality level of data is very heterogeneous and in many cases a well-defined schema is 
not provided
• The schema less concept emphasizes such heterogeneity
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Big Data… Many Definitions

The Multiple V’s: Data that brings challenges in Volume (size), Velocity(speed), Variety(formats), 
Veracity(accuracy), as well as Visualization, Value, Vendors, etc.
McKinsey: “Datasets whose size is beyond the ability of typical database software tools to capture, store, manage, 
and analyze.”!
Economist: “Society has more information than ever before and we can do things when we have a large body of 
information that simply we could not do when we only have smaller amounts”
Wikipedia: “Big data is a term for data sets that are so large or complex that traditional data processing application 
software is inadequate to deal with them. Big data challenges include capturing data, data storage, data analysis, 
search, sharing, transfer, visualization, querying, updating and information privacy.”
Adam Jacobs, 1010 data: “Data whose size forces us to look beyond the tried-and-true methods that are 
prevalent”
Dan Law, Altamira: “Data of any type with potential value that exceeds the analytic capabilities of traditional 
stand-alone solutions”, “Any data collection that cannot be managed as a single instance.”
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Who generates big data?
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Who generates big data?
IoT – Internet of Things it is the evolution of the use of the Internet in which objects become 
recognizable and acquire intelligence because they can communicate data about themselves and 
access aggregate information from other
• The alarm sounds earlier in case of traffic
• The frozen food in the supermarket 

freezer signals that it is about to expire
• The industrial plant reports a high 

probability of failure within the next 
few hours
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A data science infrastructure
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A data science infrastructure

49

Data Lake

Enterprise 
Data 

Warehouse

Analytics 
Sandbox

• Data Blending
• Exploratory

search
• Data mining
• Text mining
• Statistical analysis
• ….

ETL

ODS
internal - strucured

WEB & Doc.
external - unstrucured

SENSORS
real time

OLAP & 
Dashboarding

Data Scientist Data Enthusiast

Business User

Mega Batch Micro Batch Real Time

A large storage repository that "holds data until it is needed“
• allow rapid ingestion of new datasets without extensive 

modeling
• scale large datasets while delivering performance
• support advanced analytics



A data science infrastructure
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A data science infrastructure
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Beyond Data Lakes: Data Platforms
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• Data lake has initially conceived as data repositories but it was soon realized that without 
processing and management tools the usefulness of the data is limited and there is a risk of 
transforming the data lake into a data swamp

• Due to the progressive broadening of its definition and tot he blurring of the architectural 
borderlines, the term DL is often replaced by the more general term data platform or even data 
ecosystem.

• Today cloud data platforms, such as Google and Amazon, provide several tools for data ingestion, 
transformation, and analysis. These tools relieve users from the technological complexity of 
administration by providing additional services that enable companies to focus on functional 
aspects.



Beyond Data Lakes: Data Platforms
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On Premise vs Cloud
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• Cloud computing is a Delivery Model for on-demand access to a shared pool of configurable 
computing resources (networks, servers, storage, database, and software) that can be rapidly 
provisioned and deployed with minimal effort.

• Cloud computing is a computing model that lets you access of software and hardware resources 
over the Internet on demand and pay-per-use. It enables companies to consume a computer 
resource as a utility just like electricity rather than having to build and maintain computing 
infrastructures in house.



Cloud Offering Services
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Software as a Service (SaaS): Consumer uses provider’s applications running on provider's cloud 
infrastructure.
• Salesforce, Gmail, Facebook

Platform as a Service (PaaS) :Consumer can create custom applications using programming tools 
supported by the provider and deploy them onto the provider's cloud infrastructure.
• Google App Engine, Microsoft Azure CosmosDB, Amazon Dynamo DB

Infrastructure as a Service(IaaS): Consumer can use computing resources within provider's 
infrastructure upon which they can deploy and run arbitrary software, including OS and applications.
• Amazon EC2



Cloud Strengths
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Scalability: resource is available as and when the client needs it and, therefore, there are no  delays in 
expanding capacity or the wastage of unused capacity.

No investment in hardware: everything is setup and maintained by the cloud provider, saving the time 
and cost of doing soon the client side.

Pay for what you use: if the service is only needed for a limited period then it is only paid for over that 
period and subscriptions can usually be halted at any time.

Updates and Disaster Recovery are automated: Updates will usually be free of charge and deployed 
automatically by the cloud provider.

If you budget on the bare resource costs cloud computing is by far more expansive than in house
computing. You must budget on the Total Cost Ownership (TCO)



More Cloud Strengths
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• On demand and pay per use
• Flexibility and Scalability(very quickly)
• Accessibility (any time and anywhere on any web browser or on any pc/mobile device)
• Capital-expenditure Free (without hardware and locally installed software)
• Automatic software updates
• Increased collaboration (edit and share documents anytime, from anywhere)
• Work from anywhere
• Security



Multi-Cloud Architectures
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• In a multi-cloud architecture applications and processes span on different cloud platforms

Private



Why a Multi-Cloud Architecture
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• Opportunity: cost, service level, by project
• Avoid vendor lock-in and take advantage of best-of-breed solultions (Gartner)
• Risk mitigation: deploying critical systems across multiple cloud services provides additional fault 

tollerance

Private



Multi-Cloud Architectures Challenges
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• Security and Trust
• Deploying, Balancing & Provisioning

Private



Hadoop
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The Apache Hadoop software library is a framework that allows for the distributed processing of large 
data sets across clusters of computers using simple programming models. It is designed to scale up 
from single servers to thousands of machines, each offering local computation and storage. Rather 
than rely on hardware to deliver high-availability and reliability, the library itself is designed to detect 
and handle failures at the application layer, so delivering a highly-available service on top of a cluster 
of computers, each of which may be prone to failures.



SMP Architecture
Traditional RDBMS are based on Symmetric Multi Processing (SMP) architecture: several 
processors share the same RAM, the same I/O bus and the same disk/disk array
• The limit of such architecture depends on the physical number of devices that can be 

mounted and by the BUS bottleneck 
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MPP Architecture
In a Massively Parallel  Processing  (MPP) Architecture several processors, each equipped with 
its own RAM and disks, collaborate to solve a single problem by splitting it in several independent 
tasks. It is also called shared nothing architecture
• Examples of MPP appliances are Teradata, Nettezza that are mainly used for Data 

Warehouse applications
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Hadoop vs MPP
In MPP, as in MapReduce, processing of data is distributed across a bunch of compute nodes, 
these separate nodes process their data in parallel and the node-level output sets are 
assembled together to produce a final result set, but:
• MPP systems are based on high-level HW and proprietary SW while Hadoop is based on 

commodity HW and open source SW
• Hadoop is natively controlled through imperative code while MPP appliances are queried 

though declarative query. 
• In a great many cases, SQL is easier and more productive than is writing MapReduce jobs, 

and database professionals with the SQL skill set are more plentiful and less costly than 
Hadoop specialists. 

Since they share the same computation mechanism Hadoop and MPP systems are relatives and 
there is no reasons for the two approaches to converge. Some specific solutions, such as 
Cloudera Impala, are examples of such process.
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Grid Computing Architecture
Grid computing is the collection of computer resources from multiple locations to reach a 
common goal. Grid computing is distinguished from conventional high performance 
computing systems such as cluster computing in that:
• Grid computers have each node set to perform a different task/application.
• Grid computers tend to be more heterogeneous and geographically dispersed (thus not 

physically coupled) than cluster computers.
• Although a single grid can be dedicated to a particular application, commonly a grid is 

used for a variety of purposes. 
• Grids are often constructed with general-purpose grid middleware software libraries.
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HPC Architecture
The term High-Performance Computing refers to massively parallel system specifically
devoted to solve cpu-intensive tasks:
• HPC is often used as a synonym of Super Computer even if supercomputer is a more 

general term referring to a system that is at the frontline of contemporary processing 
capacity. Its architecture and features can change along time

• HPC main applications are scientific simulations, weather forecasts, 3d modeling, etc.
• In many cases the processors share the same set of disk drive
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Scalability
Scalability is ability of a system, network, or process to handle a growing amount of work 
in a capable manner or its ability to be enlarged to accommodate that growth.

Methods of adding more resources for a particular application fall into two broad 
categories: horizontal and vertical scaling.
• To scale horizontally (or scale out) means to add more nodes to a system, such as 

adding a new computer to a distributed software application. 
• To scale vertically (or scale up) means to add resources to a single node in a system, 

typically involving the addition of CPUs or memory to a single computer. 

Vertical scalability is typically limited by the actual capability of the architecture to mount 
more resources and by the physical limitation of such resources (e.g. processor speeds). 
Nowadays, the availability of low cost commodity hardware and network connections 
make scaling out often more convenient than scale up.
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NoHadoop: Not only Hadoop
The data science toolkit is composed by several other technologies for data storing and handling 
that are born around the concept One size does not fit all

NoSQL – Not Only SQL
• Mongo DB – Document Oriented
• Neo4J – Graph-Based
• Hbase, BigTable – tabular
• Redis – Key-Value

NewSQL (support ACID properties)
• VoltDB

Text analytics
• Elastic Search

• Oracle Endeca (in memory)
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Appliance
• Oracle Exadata & Exalytics (in memory)
• SAP HANA (in memory)
• Teradata Aster
• SAS LASR Analytic Server (in memory)

Data Analysis
• Alteryx (Data blending)
• R (statistical analysis and data mining)
• Tableau (Extemporary and Exploratory analysis)
• Brandwatch, Tracx (Social Media Monitoring)



Hadoop1 vs Hadoop2
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• Hadoop1 (i.e. map-reduce) was born  to cope with very specific tasks
• Difficult to program
• Robust and efficient on huge batch jobs but not suited for on-line processing

• Hadoop2 (i.e. Yarn) is born to makes Hadoop a more general purpose programming framework
• Map-reduce is just one of the possible programming paradigms
• Support for SQL
• Suited for on-line processing

• The community itself is trying to make it easier to non-Hadoop experts to use it
• Graphical control consoles
• Connectors to many external software (e.g. OLAP Microstrategy)

Native Big Data 
Application

Traditional Database / Data Analysis 
Application



Distributions and the cloud
In many cases Hadoop is not exploited from an owned cluster, but rather from a cloud provider.
Several factors impacts on the choice of the provider :
• Costs
• Completeness of the cloud Market place
• Other projects hosted on the cloud and producing the source data (moving big data may be 

expansive!)
• ….

Thus the distribution choice can be either a driver or a consequence
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A disenchanted analysis of Hadoop
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A disenchanted analysis of Hadoop
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• Hadoop is a distributed system but with respect to previous distributed architectures it makes 
cluster computing easier to administer, and easier to program. It is based on commodity HW and 
open source SW

• Map-reduce is a programming model that makes it simple carrying out parallel computations but, 
NOT all the problems/algorithms can be efficiently parallelized on such architecture. Others are not 
parallelizable at all.
• A lot of research/development is running on porting algorithms to Hadoop

• Hadoop is born in the Era of cloud computing: cloud service providers are pushing Hadoop and Big 
Data since they require a lot of computational power, a lot of disk storage that can be bought in the 
cloud

• Hadoop is not more efficient than centralized architectures (e.g. ORACLE DBMS) or Appliances (e.g. 
Teradata) but it can scale out at a lower price



A disenchanted analysis of Hadoop
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• Hadoop is the answer of programmers companies (i.e. Google) to data modeling, storing and 
handling
• Favors programming to modeling if compared to traditional data base systems
• Requires a radical shift in the way data are modeled and transformed
• It imposes a programmer paradigm with a limited set of functionalities



The Map-Reduce paradigm: an example
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The Map-Reduce paradigm: an example
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The Map-Reduce paradigm: an example
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The Map-Reduce paradigm: an example

93
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Hadoop 1 vs Hadoop 2
The Hadoop 1.0 project is around since ten years. Its main features are:
• It was inspired by a similar Google project proposing Map-Reduce computation framework 

and the proprietary Google File System
• It is mainly oriented to execute batch Map-Reduce

The first stable Hadoop 2.0 release is dated 2013. Its main features are:
• It solves some bottlenecks and single-point of failure of Hadoop 1
• it turns Hadoop to be a Data Operating system by adding YARN (Yet Another Resource 

negotiator) a resource-management platform responsible for managing compute 
resources in clusters and using them for scheduling of users' applications

• Its opens to computation mechanisms different from Map-Reduce
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Main modules
Common: the common utilities that support the other Hadoop modules
Distributed File System: a distributed file system that provides high-throughput access to 
application data
YARN: A framework for job scheduling and cluster resource management
Map Reduce: A YARN-based system for parallel processing of large data sets

95HDFS
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More modules
Ambari: A web-based tool for provisioning, managing, and monitoring Apache Hadoop clusters 
which includes support for HDFS, MapReduce, Hive, HCatalog, HBase, ZooKeeper, Oozie, Pig 
and Sqoop. 
ZooKeeper: A high-performance coordination service for distributed applications. 
Oozie is a workflow scheduler system to manage Apache Hadoop jobs. Oozie Workflow jobs 
are Directed Acyclical Graphs (DAGs) of actions.
Sqoop is a tool designed for efficiently transferring bulk data between Hadoop and structured 
datastores such as relational databases. 
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and more modules…
Pig: a platform for analyzing large data sets that consists of a high-level language (Pig-Latin) for 
expressing data analysis programs. Pig-Lating programs look like ETL flows that transform data. 
Pig-Latin programs are compiled to Map-Reduce jobs.
Hive: provides a mechanism to project structure onto HDFS data and query the data using a 
SQL-like language called HiveQL. HiveQL also allows traditional map-reduce programmers to 
plug in their custom mappers and reducers to improve preformances.

Since Pig code and hive queries are implemented as map-reduce jobs, they determine a batch 
execution.
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and more modules…
HBase: is a non-relational, distributed DBMS. It runs on top of HDFS providing BigTable-like 
capabilities for Hadoop. HBase features compression, in-memory operation, and Bloom filters 
on a per-column basis, it allows flexible schemata. Basically HBASE is a key/value data store.
Spark: In contrast to two-stage disk-based Map-Reduce paradigm, Spark's in-memory 
primitives provide performance up to 100 times faster for certain applications. By allowing user 
programs to load data into a cluster's memory and query it repeatedly, Spark is well suited to 
machine learning algorithms.
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HBase: is a non-relational, distributed DBMS. It runs on top of HDFS providing BigTable-like 
capabilities for Hadoop. HBase features compression, in-memory operation, and Bloom filters 
on a per-column basis, it allows flexible schemata. Basically HBASE is a key/value data store.
Spark: In contrast to two-stage disk-based Map-Reduce paradigm, Spark's in-memory 
primitives provide performance up to 100 times faster for certain applications. By allowing user 
programs to load data into a cluster's memory and query it repeatedly, Spark is well suited to 
machine learning algorithms.

and more modules…
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Spark
Spark was initially started at UC Berkeley AMPLab in 2009. It requires a cluster manager and a 
distributed storage system. For cluster manager, Spark supports standalone (native Spark 
cluster), Hadoop YARN, or Apache Mesos. For distributed storage, Spark can interface with a 
wide variety, including HDFS, Cassandra, and Amazon S3.

The Spark project consists of multiple components
• Spark SQL introduces a new data abstraction called SchemaRDD, which provides support for structured and semi-

structured data. Spark SQL provides a domain-specific language to manipulate SchemaRDDs in Scala, Java, or 
Python. It also provides SQL language support, with command-line interfaces and ODBC/JDBC server

• Spark Streaming leverages Spark Core's fast scheduling capability to perform streaming analytics. It ingests data in 
mini-batches and performs RDD transformations on those mini-batches of data. 

• MLlib is a distributed machine learning framework on top of Spark that because of the distributed memory-based 
Spark architecture is ten times as fast as Hadoop disk-based Apache Mahout.

• GraphX is a distributed graph processing framework on top of Spark. It provides an API for expressing graph 
computation that can model the Pregel abstraction. 
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… and more modules
Storm: a distributed real-time computation system for processing large volumes of high-
velocity data. Storm on YARN is powerful for scenarios requiring real-time analytics, machine 
learning and continuous monitoring of operations.
Giraph: an iterative graph processing system built for high scalability. For example, it is 
currently used at Facebook to analyze the social graph formed by users and their connections. 
HCatalog create a relational abstraction of data in HDFS and ensures that users need not worry 
about where or in what format their data is stored. HCatalog displays data from RCFile format, 
text files, or sequence files in a tabular view. 
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… and more modules
Phoenix: is a relational database layer over HBase delivered as a client-embedded JDBC driver 
targeting low latency queries over HBase data. Apache Phoenix takes your SQL query, compiles 
it into a series of HBase scans, and orchestrates the running of those scans to produce regular 
JDBC result sets. 
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Hadoop Distributed File System– HDFS1
The HDFS is a distributed file system designed to run on commodity hardware.
• Hardware failure is the norm rather than the exception. Therefore, detection of faults and 

quick, automatic recovery from them is a core architectural goal of HDFS.
• Applications that run on HDFS need streaming access to their data sets. HDFS is designed 

more for batch processing rather than interactive use by users. The emphasis is on high 
throughput of data access rather than low latency of data access. 

• Applications that run on HDFS have large data sets. A typical file in HDFS is gigabytes to 
terabytes in size. Thus, HDFS is tuned to support large files.

• HDFS applications need a write-once-read-many access model for files. A file once created, 
written, and closed need not to be changed. This assumption simplifies data coherency 
issues and enables high throughput data access. 

• A computation requested by an application is much more efficient if it is executed near the 
data it operates on. HDFS provides interfaces for applications to move themselves closer to 
where the data is located (data locality). 
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Hadoop Distributed File System– HDFS 2
With YARN in HDP 2.0, new applications are emerging that will execute on the same Hadoop 
cluster against data in HDFS. This range of applications have different data access patterns and 
requirements, going beyond just batch
While in HDFS 1 all disks were treated equally in each node  HDFS 2 is technology aware to 
take advantage of all storage and memory hardware – spinning disks, solid state drives, RAM 
memory and external storage
The cluster system administrator will be able to configure the storage media available on each 
node. HDFS will then allow datasets to be given a storage tier preference. Applications will be 
able to specify a Storage Medium preference when creating files that supports the 
applications’ read work loads.
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HDFS Federation
Differently from HDFS 1, HDFS 2 implements a federation of name spaces.
• A name space (NS) is a hierarchy of files and directories (i.e. two name spaces can have the 

same file name in the same directory). Metadata for each name space are stored on a Name 
Node (NN). 

• The NN maintains the name space tree and the mapping of data blocks to Data Nodes (DN).
• Name spaces use blocks grouped under a Block Pool. A DN can provide blocks to more than 

one name space.
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HDFS Federation
Scalability: because the NN keeps all the name space and block locations in memory, the 
size of the NN heap limits the number of files and also the number of blocks addressable. 
This also limits the total cluster storage that can be supported by the NN.
Performance: NN is the single point for storage and management of meta-data, it can 
become a bottleneck for supporting a huge number of files, especially a large number of 
small files. 
Availability: you can separate name spaces of different applications improving the overall 
availability of the cluster. 
Maintainability, Security & Flexibility: block pool abstraction allows other services to use 
the block storage with perhaps a different name space structure. Each name space is 
isolated and not aware of the others.

Applications can read/write on more than one name space.
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Cluster Topology
In order to carry out proper choices the cluster must be aware of the Cluster Topology that is 
defined during the cluster setting phase. Block storage and process allocation (data locality) are 
tasks that need such information
Nodes are organized in racks  and racks are organized in data center
Hadoop  models such concepts in a tree-like fashion and computes the distance between nodes 
as their distance on the tree.
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Data Blocks & Data Replica
The file content is split into large blocks (default 128 MB), and each block of the file is 
independently replicated at multiple Data Nodes in order to improve performance and 
robustness.
Replication is aware of the cluster topology. For each data block the name node stores the list 
of data nodes storing it. The default replication factor is 3: 
• Copy 1 is stored on the node (n1) where the client issued the write command
• Copy 2 is stored on a node (n2) in a rack  (r2) different from the one of n1 (off-rack)
• Copy 3 is stored on a node, different from n2, but that belongs to r2

In case of unavailability the system transparently rebalances replicas
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Data Blocks VS OS Blocks
The HDFS data block size ranges between 64MB and 1GB
• The data block is the smallest unit of data addressed in the name node
• Large data blocks reduces the cost for handling the data request at the cluster level rather 

than at the node level. In HDFS, those requests go across a network and come with a lot of 
overhead: each request has to be processed by the Name Node to figure out where that 
block can be found. 
• Lets say you have a 1000Mb file. With a 4k data block size, you'd have to make 256,000 

requests. If you use 64Mb blocks, the number of requests goes down to 16, greatly 
reducing the cost of overhead and load on the Name Node. 

• Locally on a data node a data block request will be turned in several OS blocks requests
• The OS blocks (i.e. disk pages) composing a data block can be accessed independently
• If a file is smaller than the data block size it will be stored in a smaller file on the disk
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Data Locality
Hadoop exploits cluster topology and data block replication to apply the data locality principle

When computations involves large set of data its cheaper (i.e. faster) to move code to data 
rather than data to code

The following cases respect the order the resource manager prefers:
1. Process and data on the same node
2. Process and data on the different node of the same rack
3. Process and data on different racks of the same data center
4. Process and data on different racks of the different data centers
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Name Space & Name Node
Name space meta-data, called the image, includes:
• The name space tree and the mapping of blocks to Data Nodes.
• Inodes record attributes like permissions, modification and access times, name space 

and disk space quotas.
Name Node keeps the entire name space image in RAM. The persistent record of the 
image stored in the Name Node's local native file system is called a checkpoint. 

The Name Node records changes to HDFS in a write-ahead log called the journal in its 
local native file system

A secondary name node regularly connects with the primary one and builds snapshots of 
the primary name node's directory information, which the system then saves to local or 
remote directories. These check-pointed images can be used to restart a failed primary 
name node without having to replay the entire journal of file-system actions.
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High-Availability
Prior to Hadoop 2, the NN was a single point of failure in an HDFS cluster. 

In a typical HA cluster, two separate machines are configured as NNs. At any point in time, 
exactly one of the NNs is in an Active state, and the other is in a Standby state. 

The NN in Standby state keeps informed of the name space meta-data:
• Reading the log files written by the active state NN. In the event of a failover, the Standby 

will ensure that it has read all of the edits from the shared storage before promoting itself 
to the Active state. This ensures that the namespace state is fully synchronized before a 
failover occurs.

• Receiving the data block locations and the heartbeats directly from the DN that are 
configured with the location of both Name Nodes.
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Reading in HDFS
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Writing in HDFS
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The Heart Beat Mechanism
Heart Beats are signals DNs periodically (by default 10 minutes) send to the NN to make it 
aware that they are active. 
Heart Beats absence trigger several actions within the cluster:
• If the NN does not receive the Heart Beats from DN it considers it inactive and it 

creates a replica, on different DNs, of the data blocks stored in such node
• The AM has to emit heartbeats to the RM to keep it informed that the AM is alive and 

still running.
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YARN
YARN is the resource-management platform responsible for managing compute resources in 
clusters and using them for scheduling of users' applications

While in Hadoop 1 the job scheduling/monitoring functionalities were both taken by the Job 
tracker, in Hadoop 2 such functionalities are redistributed between the following agents:
• A global Resource Manager (RM) that is the ultimate authority that arbitrates resources 

among all the applications in the system. Resources are negoziated, assigned and used 
based on the abstract notion of a resource Container which incorporates elements such as 
memory, cpu, disk, network etc. In the first version, only memory is supported.

• A per-node slave, the Node Manager (NM) who is responsible for containers, monitoring 
their resource usage (cpu, memory, disk, network) and reporting the same to the RM.

• A per-application Application Manager (AM) is tasked with negotiating resources from the 
RM and working with the NMs to execute and monitor the tasks.
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YARN
The RM has two main components: Scheduler and Applications Manager.

The Scheduler is responsible for allocating resources to the various running applications 
subject to familiar constraints of capacities, queues etc. The Scheduler is a pure scheduler 
in the sense that: 
• it performs no monitoring or tracking of status for the applications. 
• it offers no guarantees about restarting failed tasks either due to application failure or 

hardware failures. 

The ApplicationsManager (AsM) is responsible for accepting job-submissions, negotiating 
the first container for executing the application specific AM and provides the service for 
restarting the AM container on failure.
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YARN
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Application Master
The AM allows YARN to be more:
Scalable: many functionalities are distributed on several AMs thus the RM is no more a 
bottleneck in the cluster. RM is a pure scheduler i.e. it doesn’t attempt to provide fault-
tolerance for resources. 
Open: moving all application framework specific code into the AM generalizes the system so it 
can now support multiple frameworks such as MapReduce, MPI and Graph Processing.
• Since AM is essentially user-code, RM cannot trust it (i.e. any AM is not a privileged service)
• The YARN system (RM and NM) has to protect itself from faulty or malicious AMs and 

resources granted to them at all costs

Depending on the Containers it receives from the RM, the AM may update its execution plan to 
accommodate the excess or lack of resources. Container allocation/de-allocation can take place 
in a dynamic fashion as the application progresses
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YARN – Walkthrough
Application execution consists of the following steps:
• Application submission
• Bootstrapping the AM instance for the application
• Application execution managed by the AM instance

1. A client program submits the application, including the 
necessary specifications to launch the application-specific 
AM itself.

2. The RM assumes the responsibility to negotiate a specified 
container in which to start the AM and then launches it.

3. The AM, on boot-up, registers with the RM – the 
registration allows the client program to query the RM for 
details, which allow it to  directly communicate with its own 
AM.
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YARN – Walkthrough
4. During normal operation the AM negotiates appropriate resource containers via the 

resource-request protocol.
5. On successful container allocations, the AM launches the container by providing the 

container launch specification to the NM. The launch specification, typically, includes the 
necessary information to allow the container to communicate with the AM itself.

6. The application code executing within the container then 
provides necessary information (progress, status etc.) 
to its AM.

7. During the application execution, the client that submitted 
the program communicates directly with the AM to get 
status, progress updates etc. 

8. Once the application is complete, and all necessary work 
has been finished, the AM deregisters with the RM and 
shuts down, allowing its own container to be repurposed.
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