
Big Data & Data Scientist
A B R I E F I N T R O D U C T I O N T O D ATA S C I E N C E A N D B I G D ATA

Matteo Golfarelli

Data Science & Data Scientist: a definition
Data Science is the extraction of knowledge from data. It employs techniques and theories drawn from
many fields within the broad areas of statistics and information technology

The data scientist is an expert of such areas with a strong aptitude in understanding the business and
the data. He is capable of transforming the information hidden in the data in a competitive advantage.
His final goal is to create new business models in the so-called data-driven economy

Data Science is an evolution of Business Intelligence and it overcomes the following limitations:

2

Business Intelligence Data Science

Works on Structured data only Works on Structured and unstructured data

Requires a complex/rigid ETL process Is based on a more flexible/agile/extemporary
extraction process

Implemented by Computer Engineers Exploited by
Business Users and data analysts

Implemented and exploited by Data Scientists and
Data Enthusiasts

Implemented on Relational DBMS Implemented on Big Data and NoSQL technologies

Why data science?

3

Availability
of large
datasets

Business
needs

Internet of Things

User Generated Contents

Smart Cities

Smart Grid

Why data science?

4

Appropriate
data analysis
techniques

Technologies
to handle

them
Internet of Things

User Generated Contents

Smart City

Smart Grid

Hadoop

NoSQL

Text Mining

Natural Language Processing
Data Mining

R

Explorative Analysis

Availability
of large
datasets

Business
needs

Where does Data science come from?
The enabler factors of this revolution are:
• Pressing user needs: users ask for quantitative information in the data-driven economy
• Data Availability: Internet of Things
• Computational power: Big Data Technologies

5

Where does Data science come from?
The enabler factors of this revolution are:
• Pressing user needs: users ask for quantitative information in the data-driven economy
• Data Availability: Internet of Things
• Computational power: Big Data Technologies

A personal experience that perfectly fits this concept is Technogym a worldwide leading company in
the Wellness market
• Adds software and sensors to its machines that are stand-alone or connected at the Facility level
• Builds a social environment (social network, Apps) providing additional services to its customers
• Moves its software framework to the cloud

6

Bilions of data about each single Physical Activity Step is available for:
Customer profiling, Scientific analysis, Drop-Out prevention, etc.

Where does Data science come from?
The enabler factors of this revolution are:
• Pressing user needs: users ask for quantitative information in the data-driven economy
• Data Availability: Internet of Things
• Computational power: Big Data Technologies

7
90 92 94 96 98 00 02 04 06 08 10 12 14 16 18 20

Where does Data science come from?
The enabler factors of this revolution are:
• Pressing user needs: users ask for quantitative information in the data-driven economy
• Data Availability: Internet of Things
• Computational power: Big Data Technologies

8
90 92 94 96 98 00 02 04 06 08 10 12 14 16 18 20

Managers need quantitative information
First DW projects start in USA companies

Where does Data science come from?
The enabler factors of this revolution are:
• Pressing user needs: users ask for quantitative information in the data-driven economy
• Data Availability: Internet of Things
• Computational power: Big Data Technologies

9
90 92 94 96 98 00 02 04 06 08 10 12 14 16 18 20

DWing lands in Italy too

Where does Data science come from?
The enabler factors of this revolution are:
• Pressing user needs: users ask for quantitative information in the data-driven economy
• Data Availability: Internet of Things
• Computational power: Big Data Technologies

10
90 92 94 96 98 00 02 04 06 08 10 12 14 16 18 20

Google file sytem was devised

Map Reduce was devised at Google

Where does Data science come from?
The enabler factors of this revolution are:
• Pressing user needs: users ask for quantitative information in the data-driven economy
• Data Availability: Internet of Things
• Computational power: Big Data Technologies

11
90 92 94 96 98 00 02 04 06 08 10 12 14 16 18 20

Hadoop 1 was devised to support Nutch
– the Apache web crawler

Where does Data science come from?
The enabler factors of this revolution are:
• Pressing user needs: users ask for quantitative information in the data-driven economy
• Data Availability: Internet of Things
• Computational power: Big Data Technologies

12
90 92 94 96 98 00 02 04 06 08 10 12 14 16 18 20

DJ Patil states: "Data Scientist is The
Sexiest Job of the 21st Century”

Where does Data science come from?
The enabler factors of this revolution are:
• Pressing user needs: users ask for quantitative information in the data-driven economy
• Data Availability: Internet of Things
• Computational power: Big Data Technologies

13
90 92 94 96 98 00 02 04 06 08 10 12 14 16 18 20

Mongo DB was released
NoSQL identifies distributed DBMSs not

providing ACID properties

Where does Data science come from?
The enabler factors of this revolution are:
• Pressing user needs: users ask for quantitative information in the data-driven economy
• Data Availability: Internet of Things
• Computational power: Big Data Technologies

14
90 92 94 96 98 00 02 04 06 08 10 12 14 16 18 20

Yahoo announced its Hadoop cluster
grew up to 42,000 nodes

The Data Enthusiast term was coined

Where does Data science come from?
The enabler factors of this revolution are:
• Pressing user needs: users ask for quantitative information in the data-driven economy
• Data Availability: Internet of Things
• Computational power: Big Data Technologies

15
90 92 94 96 98 00 02 04 06 08 10 12 14 16 18 20

Hadoop 2 was released
The platform turns to more generic purpose

Big Data: the renaissance of Business
Intelligence
The main effect of Big Data raise is a renewed interest in the Data Analysis. While the technological gap
can be bridged quickly, bridge the cultural gap for Data Analysis can take years (or even a new
generation of managers).
• Most of the Big Data-related technologies are NEW
• Most of the Big Data-related techniques are already KNOWN and have been adapted to new

technologies

16

17

A Time Line for Data Analysis

1998 2003 2008

DM & ML

Big Data

Analytics

DW & OLAP

time

BI 1.0 BI 2.0

A
d

o
p

ti
o

n
le

ve
li

n
 c

o
m

p
a

n
ie

s

A Time Line for Data Analysis

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

RDBMS

A Time Line for Data Analysis

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

1970 E.F. Codd (IBM) publishes the relational model
“It provides a means of describing data with its natural structure only--that is, without superimposing any additional structure for

machine representation purposes. Accordingly, it provides a basis for a high level data language which will yield maximal
independence between programs on the one hand and machine representation on the other.”(Codd 1970)

RDBMS

A Time Line for Data Analysis

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

1974 SQL language was born - Donald Chamberlin (IBM)
A standard language for querying relational DBMS

RDBMS

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

1976 Peter Chen publishes the Entity Relationship model
A conceptual model for relational databases

A Time Line for Data Analysis

RDBMS

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

1979 Larry Ellison launches the first ORACLE’s DBMS release

A Time Line for Data Analysis

RDBMS

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

1982 TCP/IP an the word "Internet" are defined

A Time Line for Data Analysis

RDBMS

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

1991 Il CERN announces internet

A Time Line for Data Analysis

RDBMS

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

1994 Jeff Bezos opens Amazon

A Time Line for Data Analysis

RDBMS

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

1996 10 milions of computers are connected to the Internet

A Time Line for Data Analysis

RDBMS

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

1998 Larry Page and Sergey Brin open Google

A Time Line for Data Analysis

RDBMS

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

2003 Google File System was born

Big Data

A Time Line for Data Analysis

Big Data

RDBMS

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

2004 map Reduce (Google) was born
A distributed computation programming language

A Time Line for Data Analysis

Big Data

RDBMS

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

2005 Hadoop 1 (Apache) was born
Based on Google papers, it is a Big Data open source platform for the web crawler Nutch

A Time Line for Data Analysis

Big Data

RDBMS

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

2006 Amazon Web Services (AWS) was born
everyone is talking about cloud computing (conied on 1997)

A Time Line for Data Analysis

Big Data

RDBMS

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

2008 Data Science becomes trendy
DJ Patil states: "Data Scientist is The Sexiest Job of the 21st Century”

A Time Line for Data Analysis

NoSQL

Big Data

RDBMS

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

2008 Cassandra (Facebook) was born
An open source non-relational DBMS (wide column)

A Time Line for Data Analysis

NoSQL

Big Data

RDBMS

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

2008 Voldemort (Linkedin) was born
An open source non-relational DBMS (key-value)

A Time Line for Data Analysis

NoSQL

Big Data

RDBMS

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

2009 MongoDB was born
An open source non-relational DBMS (document-based)

A Time Line for Data Analysis

NoSQL

Big Data

RDBMS

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

2009 IoT was born
According to CISCO more things than persons are connected on Internet

A Time Line for Data Analysis

NoSQL

Big Data

RDBMS

1970 time1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

2011 HIVE was born
A relational DBMS on a Big Data platform

A Time Line for Data Analysis

Big Data: a definition
Big Data are dataset with the following features, not necessarily all!

38

Big Data: volume
Volume: Terabyte or Petabyte so that they exceed the the processing capacity of conventional

database systems.
• Some examples:

• Walmart: 1 million transaction per hour (2010)
• eBay: data throughput reaches 100 petabytes per day (2013)
• Facebook: 40 billion photos (2010); 250PB data warehouse with 600TB added to the warehouse every

day (2013)
• 500 millions of tweet per day (in 2013)

39

terabyte TB 1012 1 HD

petabyte PB 1015 1000 HD

exabyte EB 1018 1 milion of HD

zettabyte ZB 1021 1 bilion of HD

The hard disk of a desktop PC
can store up to 1 TB

Big Data: velocity
Velocity: mobile and personal devices, IoT digital transactions produce data at a rate higher than

traditional information systems

40

What does it
happen in internet
in 60 seconds?

Big Data: velocità
Velocità: device mobili e transazioni IoT producono dati con una frequenza superiori a quella dei

sistemi informativi tradizionali.

41

Big Data: velocità
Velocità: device mobili e transazioni IoT producono dati con una frequenza superiori a quella dei

sistemi informativi tradizionali.

42

Big Data: velocità
Velocità: device mobili e transazioni IoT producono dati con una frequenza superiori a quella dei

sistemi informativi tradizionali.

43

Big Data: Variety
• Variety: Data is extremely heterogeneous, in the format in which are represented, but also and in

the way they represent information, both at the intensional and extensional level
• E.g., text from social networks, sensor data, logs from web applications, databases, XML

documents, RDF data, etc.
• Data format ranges therefore from structured (e.g, relational databases) to semistructured

(e.g., XML documents), to unstructured (e.g., text documents)

• Veracity: the quality level of data is very heterogeneous and in many cases a well-defined schema is
not provided
• The schema less concept emphasizes such heterogeneity

44

Big Data… Many Definitions

The Multiple V’s: Data that brings challenges in Volume (size), Velocity(speed), Variety(formats),
Veracity(accuracy), as well as Visualization, Value, Vendors, etc.
McKinsey: “Datasets whose size is beyond the ability of typical database software tools to capture, store, manage,
and analyze.”!
Economist: “Society has more information than ever before and we can do things when we have a large body of
information that simply we could not do when we only have smaller amounts”
Wikipedia: “Big data is a term for data sets that are so large or complex that traditional data processing application
software is inadequate to deal with them. Big data challenges include capturing data, data storage, data analysis,
search, sharing, transfer, visualization, querying, updating and information privacy.”
Adam Jacobs, 1010 data: “Data whose size forces us to look beyond the tried-and-true methods that are
prevalent”
Dan Law, Altamira: “Data of any type with potential value that exceeds the analytic capabilities of traditional
stand-alone solutions”, “Any data collection that cannot be managed as a single instance.”

45

Who generates big data?

46

Data intensive
analysis

genetics
meteo

IoT

Web &
Social

Who generates big data?
IoT – Internet of Things it is the evolution of the use of the Internet in which objects become
recognizable and acquire intelligence because they can communicate data about themselves and
access aggregate information from other
• The alarm sounds earlier in case of traffic
• The frozen food in the supermarket

freezer signals that it is about to expire
• The industrial plant reports a high

probability of failure within the next
few hours

47
90 92 94 96 98 00 02 04 06 08 10 12 14 16 18 20

A data science infrastructure

48

Data Lake

Enterprise
Data

Warehouse

Analytics
Sandbox

• Data Blending
• Exploratory

search
• Data mining
• Text mining
• Statistical analysis
• ….

ETL

ODS
internal - strucured

WEB & Doc.
external - unstrucured

SENSORS
real time

OLAP &
Dashboarding

Data Scientist Data Enthusiast

Business User

Mega Batch Micro Batch Real Time

A data science infrastructure

49

Data Lake

Enterprise
Data

Warehouse

Analytics
Sandbox

• Data Blending
• Exploratory

search
• Data mining
• Text mining
• Statistical analysis
• ….

ETL

ODS
internal - strucured

WEB & Doc.
external - unstrucured

SENSORS
real time

OLAP &
Dashboarding

Data Scientist Data Enthusiast

Business User

Mega Batch Micro Batch Real Time

A large storage repository that "holds data until it is needed“
• allow rapid ingestion of new datasets without extensive

modeling
• scale large datasets while delivering performance
• support advanced analytics

A data science infrastructure

50

Data Lake

Enterprise
Data

Warehouse

Analytics
Sandbox

• Data Blending
• Exploratory

search
• Data mining
• Text mining
• Statistical analysis
• ….

ETL

ODS
internal - strucured

WEB & Doc.
external - unstrucured

SENSORS
real time

OLAP &
Dashboarding

Data Scientist Data Enthusiast

Business User

Mega Batch Micro Batch Real Time

Enables data analysts to conduct discovery and
situational analytics. This platform is targeted for

analysts and ‘power users’ who are the go-to people
that the entire business group uses when they need

reporting help and answers.

A data science infrastructure

51

Data Lake

Enterprise
Data

Warehouse

Analytics
Sandbox

• Data Blending
• Exploratory

search
• Data mining
• Text mining
• Statistical analysis
• ….

ETL

ODS
internal - strucured

WEB & Doc.
external - unstrucured

SENSORS
real time

OLAP &
Dashboarding

Data Scientist Data Enthusiast

Business User

Mega Batch Micro Batch Real Time

Enables data analysts to conduct discovery and
situational analytics. This platform is targeted for

analysts and ‘power users’ who are the go-to people
that the entire business group uses when they need

reporting help and answers.

Beyond Data Lakes: Data Platforms

52

• Data lake has initially conceived as data repositories but it was soon realized that without
processing and management tools the usefulness of the data is limited and there is a risk of
transforming the data lake into a data swamp

• Due to the progressive broadening of its definition and tot he blurring of the architectural
borderlines, the term DL is often replaced by the more general term data platform or even data
ecosystem.

• Today cloud data platforms, such as Google and Amazon, provide several tools for data ingestion,
transformation, and analysis. These tools relieve users from the technological complexity of
administration by providing additional services that enable companies to focus on functional
aspects.

Beyond Data Lakes: Data Platforms

53

On Premise vs Cloud

54

• Cloud computing is a Delivery Model for on-demand access to a shared pool of configurable
computing resources (networks, servers, storage, database, and software) that can be rapidly
provisioned and deployed with minimal effort.

• Cloud computing is a computing model that lets you access of software and hardware resources
over the Internet on demand and pay-per-use. It enables companies to consume a computer
resource as a utility just like electricity rather than having to build and maintain computing
infrastructures in house.

Cloud Offering Services

55

Software as a Service (SaaS): Consumer uses provider’s applications running on provider's cloud
infrastructure.
• Salesforce, Gmail, Facebook

Platform as a Service (PaaS) :Consumer can create custom applications using programming tools
supported by the provider and deploy them onto the provider's cloud infrastructure.
• Google App Engine, Microsoft Azure CosmosDB, Amazon Dynamo DB

Infrastructure as a Service(IaaS): Consumer can use computing resources within provider's
infrastructure upon which they can deploy and run arbitrary software, including OS and applications.
• Amazon EC2

Cloud Strengths

56

Scalability: resource is available as and when the client needs it and, therefore, there are no delays in
expanding capacity or the wastage of unused capacity.

No investment in hardware: everything is setup and maintained by the cloud provider, saving the time
and cost of doing soon the client side.

Pay for what you use: if the service is only needed for a limited period then it is only paid for over that
period and subscriptions can usually be halted at any time.

Updates and Disaster Recovery are automated: Updates will usually be free of charge and deployed
automatically by the cloud provider.

If you budget on the bare resource costs cloud computing is by far more expansive than in house
computing. You must budget on the Total Cost Ownership (TCO)

More Cloud Strengths

57

• On demand and pay per use
• Flexibility and Scalability(very quickly)
• Accessibility (any time and anywhere on any web browser or on any pc/mobile device)
• Capital-expenditure Free (without hardware and locally installed software)
• Automatic software updates
• Increased collaboration (edit and share documents anytime, from anywhere)
• Work from anywhere
• Security

Multi-Cloud Architectures

58

• In a multi-cloud architecture applications and processes span on different cloud platforms

Private

Why a Multi-Cloud Architecture

59

• Opportunity: cost, service level, by project
• Avoid vendor lock-in and take advantage of best-of-breed solultions (Gartner)
• Risk mitigation: deploying critical systems across multiple cloud services provides additional fault

tollerance

Private

Multi-Cloud Architectures Challenges

60

• Security and Trust
• Deploying, Balancing & Provisioning

Private

Hadoop

76

The Apache Hadoop software library is a framework that allows for the distributed processing of large
data sets across clusters of computers using simple programming models. It is designed to scale up
from single servers to thousands of machines, each offering local computation and storage. Rather
than rely on hardware to deliver high-availability and reliability, the library itself is designed to detect
and handle failures at the application layer, so delivering a highly-available service on top of a cluster
of computers, each of which may be prone to failures.

SMP Architecture
Traditional RDBMS are based on Symmetric Multi Processing (SMP) architecture: several
processors share the same RAM, the same I/O bus and the same disk/disk array
• The limit of such architecture depends on the physical number of devices that can be

mounted and by the BUS bottleneck

77

DISK

CPU

CACHE

BUS

SHARED RAM

CPU

CACHE

CPU

CACHE

CPU

CACHE

MPP Architecture
In a Massively Parallel Processing (MPP) Architecture several processors, each equipped with
its own RAM and disks, collaborate to solve a single problem by splitting it in several independent
tasks. It is also called shared nothing architecture
• Examples of MPP appliances are Teradata, Nettezza that are mainly used for Data

Warehouse applications

78

CPU

RAM

DISK

Messaging

CPU

RAM

DISK

CPU

RAM

DISK

CPU

RAM

DISK

Hadoop vs MPP
In MPP, as in MapReduce, processing of data is distributed across a bunch of compute nodes,
these separate nodes process their data in parallel and the node-level output sets are
assembled together to produce a final result set, but:
• MPP systems are based on high-level HW and proprietary SW while Hadoop is based on

commodity HW and open source SW
• Hadoop is natively controlled through imperative code while MPP appliances are queried

though declarative query.
• In a great many cases, SQL is easier and more productive than is writing MapReduce jobs,

and database professionals with the SQL skill set are more plentiful and less costly than
Hadoop specialists.

Since they share the same computation mechanism Hadoop and MPP systems are relatives and
there is no reasons for the two approaches to converge. Some specific solutions, such as
Cloudera Impala, are examples of such process.

79

Grid Computing Architecture
Grid computing is the collection of computer resources from multiple locations to reach a
common goal. Grid computing is distinguished from conventional high performance
computing systems such as cluster computing in that:
• Grid computers have each node set to perform a different task/application.
• Grid computers tend to be more heterogeneous and geographically dispersed (thus not

physically coupled) than cluster computers.
• Although a single grid can be dedicated to a particular application, commonly a grid is

used for a variety of purposes.
• Grids are often constructed with general-purpose grid middleware software libraries.

80

HPC Architecture
The term High-Performance Computing refers to massively parallel system specifically
devoted to solve cpu-intensive tasks:
• HPC is often used as a synonym of Super Computer even if supercomputer is a more

general term referring to a system that is at the frontline of contemporary processing
capacity. Its architecture and features can change along time

• HPC main applications are scientific simulations, weather forecasts, 3d modeling, etc.
• In many cases the processors share the same set of disk drive

81

Scalability
Scalability is ability of a system, network, or process to handle a growing amount of work
in a capable manner or its ability to be enlarged to accommodate that growth.

Methods of adding more resources for a particular application fall into two broad
categories: horizontal and vertical scaling.
• To scale horizontally (or scale out) means to add more nodes to a system, such as

adding a new computer to a distributed software application.
• To scale vertically (or scale up) means to add resources to a single node in a system,

typically involving the addition of CPUs or memory to a single computer.

Vertical scalability is typically limited by the actual capability of the architecture to mount
more resources and by the physical limitation of such resources (e.g. processor speeds).
Nowadays, the availability of low cost commodity hardware and network connections
make scaling out often more convenient than scale up.

82

NoHadoop: Not only Hadoop
The data science toolkit is composed by several other technologies for data storing and handling
that are born around the concept One size does not fit all

NoSQL – Not Only SQL
• Mongo DB – Document Oriented
• Neo4J – Graph-Based
• Hbase, BigTable – tabular
• Redis – Key-Value

NewSQL (support ACID properties)
• VoltDB

Text analytics
• Elastic Search

• Oracle Endeca (in memory)

83

Appliance
• Oracle Exadata & Exalytics (in memory)
• SAP HANA (in memory)
• Teradata Aster
• SAS LASR Analytic Server (in memory)

Data Analysis
• Alteryx (Data blending)
• R (statistical analysis and data mining)
• Tableau (Extemporary and Exploratory analysis)
• Brandwatch, Tracx (Social Media Monitoring)

Hadoop1 vs Hadoop2

84

• Hadoop1 (i.e. map-reduce) was born to cope with very specific tasks
• Difficult to program
• Robust and efficient on huge batch jobs but not suited for on-line processing

• Hadoop2 (i.e. Yarn) is born to makes Hadoop a more general purpose programming framework
• Map-reduce is just one of the possible programming paradigms
• Support for SQL
• Suited for on-line processing

• The community itself is trying to make it easier to non-Hadoop experts to use it
• Graphical control consoles
• Connectors to many external software (e.g. OLAP Microstrategy)

Native Big Data
Application

Traditional Database / Data Analysis
Application

Distributions and the cloud
In many cases Hadoop is not exploited from an owned cluster, but rather from a cloud provider.
Several factors impacts on the choice of the provider :
• Costs
• Completeness of the cloud Market place
• Other projects hosted on the cloud and producing the source data (moving big data may be

expansive!)
• ….

Thus the distribution choice can be either a driver or a consequence

86

A disenchanted analysis of Hadoop

87

A disenchanted analysis of Hadoop

88

• Hadoop is a distributed system but with respect to previous distributed architectures it makes
cluster computing easier to administer, and easier to program. It is based on commodity HW and
open source SW

• Map-reduce is a programming model that makes it simple carrying out parallel computations but,
NOT all the problems/algorithms can be efficiently parallelized on such architecture. Others are not
parallelizable at all.
• A lot of research/development is running on porting algorithms to Hadoop

• Hadoop is born in the Era of cloud computing: cloud service providers are pushing Hadoop and Big
Data since they require a lot of computational power, a lot of disk storage that can be bought in the
cloud

• Hadoop is not more efficient than centralized architectures (e.g. ORACLE DBMS) or Appliances (e.g.
Teradata) but it can scale out at a lower price

A disenchanted analysis of Hadoop

89

• Hadoop is the answer of programmers companies (i.e. Google) to data modeling, storing and
handling
• Favors programming to modeling if compared to traditional data base systems
• Requires a radical shift in the way data are modeled and transformed
• It imposes a programmer paradigm with a limited set of functionalities

The Map-Reduce paradigm: an example

90

Counting the number of messages of different types

Map1

Map2

Map3

Map4

Map5

Map6

IS1
IS2

IS5

IS4
IS2

IS3

IS4
IS1

IS3

Node 1

Node 2

Node 3

The Map-Reduce paradigm: an example

91

Counting the number of messages of different types

Map1

Map2

Map3

Map4

Map5

Map6

IS1
IS2

IS5

IS4
IS2

IS3

IS4
IS1

IS3

Node 1

Node 2

Node 3

Map1IS1

Map3

Map5IS3

IS2

MAP

The Map-Reduce paradigm: an example

92

Counting the number of messages of different types

Map1

Map2

Map3

Map4

Map5

Map6

IS1
IS2

IS5

IS4
IS2

IS3

IS4
IS1

IS3

Node 1

Node 2

Node 3

Map1IS1

Map3

Map5IS3

IS2

MAP SHUFFLE

The Map-Reduce paradigm: an example

93

Counting the number of messages of different types

Map1

Map2

Map3

Map4

Map5

Map6

IS1
IS2

IS5

IS4
IS2

IS3

IS4
IS1

IS3

Node 1

Node 2

Node 3

Red1

Red2

ERROR 3

INFO 8

WARN 4

Map1IS1

Map3

Map5IS3

IS2

MAP SHUFFLE REDUCE

Hadoop 1 vs Hadoop 2
The Hadoop 1.0 project is around since ten years. Its main features are:
• It was inspired by a similar Google project proposing Map-Reduce computation framework

and the proprietary Google File System
• It is mainly oriented to execute batch Map-Reduce

The first stable Hadoop 2.0 release is dated 2013. Its main features are:
• It solves some bottlenecks and single-point of failure of Hadoop 1
• it turns Hadoop to be a Data Operating system by adding YARN (Yet Another Resource

negotiator) a resource-management platform responsible for managing compute
resources in clusters and using them for scheduling of users' applications

• Its opens to computation mechanisms different from Map-Reduce

94

Main modules
Common: the common utilities that support the other Hadoop modules
Distributed File System: a distributed file system that provides high-throughput access to
application data
YARN: A framework for job scheduling and cluster resource management
Map Reduce: A YARN-based system for parallel processing of large data sets

95HDFS

YARN

Map Reduce
Batch

More modules
Ambari: A web-based tool for provisioning, managing, and monitoring Apache Hadoop clusters
which includes support for HDFS, MapReduce, Hive, HCatalog, HBase, ZooKeeper, Oozie, Pig
and Sqoop.
ZooKeeper: A high-performance coordination service for distributed applications.
Oozie is a workflow scheduler system to manage Apache Hadoop jobs. Oozie Workflow jobs
are Directed Acyclical Graphs (DAGs) of actions.
Sqoop is a tool designed for efficiently transferring bulk data between Hadoop and structured
datastores such as relational databases.

96HDFS

YARN Sq
o

o
p

Zo
o

Ke
e

p
e

r

O
o

zi
e

Ambari

Map Reduce
Batch

and more modules…
Pig: a platform for analyzing large data sets that consists of a high-level language (Pig-Latin) for
expressing data analysis programs. Pig-Lating programs look like ETL flows that transform data.
Pig-Latin programs are compiled to Map-Reduce jobs.
Hive: provides a mechanism to project structure onto HDFS data and query the data using a
SQL-like language called HiveQL. HiveQL also allows traditional map-reduce programmers to
plug in their custom mappers and reducers to improve preformances.

Since Pig code and hive queries are implemented as map-reduce jobs, they determine a batch
execution.

97HDFS

YARN Sq
o

o
p

Zo
o

Ke
e

p
e

r

O
o

zi
e

Ambari

Map Reduce
Batch

Hive Pig

and more modules…
HBase: is a non-relational, distributed DBMS. It runs on top of HDFS providing BigTable-like
capabilities for Hadoop. HBase features compression, in-memory operation, and Bloom filters
on a per-column basis, it allows flexible schemata. Basically HBASE is a key/value data store.
Spark: In contrast to two-stage disk-based Map-Reduce paradigm, Spark's in-memory
primitives provide performance up to 100 times faster for certain applications. By allowing user
programs to load data into a cluster's memory and query it repeatedly, Spark is well suited to
machine learning algorithms.

98HDFS

YARN Sq
o

o
p

Zo
o

Ke
e

p
e

r

O
o

zi
e

Ambari

Map Reduce
Batch

HBASE
on line

Hive Pig

Spark
in mem

HBase: is a non-relational, distributed DBMS. It runs on top of HDFS providing BigTable-like
capabilities for Hadoop. HBase features compression, in-memory operation, and Bloom filters
on a per-column basis, it allows flexible schemata. Basically HBASE is a key/value data store.
Spark: In contrast to two-stage disk-based Map-Reduce paradigm, Spark's in-memory
primitives provide performance up to 100 times faster for certain applications. By allowing user
programs to load data into a cluster's memory and query it repeatedly, Spark is well suited to
machine learning algorithms.

and more modules…

99HDFS

YARN Sq
o

o
p

Zo
o

Ke
e

p
e

r

O
o

zi
e

Ambari

Map Reduce
Batch

HBASE
on line

Hive Pig

Spark
in mem

Test executed on the TPC-H benchmark on a 7 nodes cluster

4 core, 32GB di RAM e 2TB di hard disk 7.200 RpM

Spark
Spark was initially started at UC Berkeley AMPLab in 2009. It requires a cluster manager and a
distributed storage system. For cluster manager, Spark supports standalone (native Spark
cluster), Hadoop YARN, or Apache Mesos. For distributed storage, Spark can interface with a
wide variety, including HDFS, Cassandra, and Amazon S3.

The Spark project consists of multiple components
• Spark SQL introduces a new data abstraction called SchemaRDD, which provides support for structured and semi-

structured data. Spark SQL provides a domain-specific language to manipulate SchemaRDDs in Scala, Java, or
Python. It also provides SQL language support, with command-line interfaces and ODBC/JDBC server

• Spark Streaming leverages Spark Core's fast scheduling capability to perform streaming analytics. It ingests data in
mini-batches and performs RDD transformations on those mini-batches of data.

• MLlib is a distributed machine learning framework on top of Spark that because of the distributed memory-based
Spark architecture is ten times as fast as Hadoop disk-based Apache Mahout.

• GraphX is a distributed graph processing framework on top of Spark. It provides an API for expressing graph
computation that can model the Pregel abstraction.

100

… and more modules
Storm: a distributed real-time computation system for processing large volumes of high-
velocity data. Storm on YARN is powerful for scenarios requiring real-time analytics, machine
learning and continuous monitoring of operations.
Giraph: an iterative graph processing system built for high scalability. For example, it is
currently used at Facebook to analyze the social graph formed by users and their connections.
HCatalog create a relational abstraction of data in HDFS and ensures that users need not worry
about where or in what format their data is stored. HCatalog displays data from RCFile format,
text files, or sequence files in a tabular view.

101HDFS

YARN Sq
o

o
p

Zo
o

Ke
e

p
e

r

O
o

zi
e

Ambari

Map Reduce
Batch

HBASE
on line

Hive Pig

Storm
real-time

Spark
in mem

Giraph
graph

HCatalog Other

Phoenix

… and more modules
Phoenix: is a relational database layer over HBase delivered as a client-embedded JDBC driver
targeting low latency queries over HBase data. Apache Phoenix takes your SQL query, compiles
it into a series of HBase scans, and orchestrates the running of those scans to produce regular
JDBC result sets.

102HDFS

YARN Sq
o

o
p

Zo
o

Ke
e

p
e

r

O
o

zi
e

Ambari

Map Reduce
Batch

HBASE
on line

Hive Pig

Storm
real-time

Spark
in mem

Giraph
graph

HCatalog Other

Phoenix

38

Research Thesis
Research Fellowships

Both on Research and Professional projects
PhD Positions

Related to BI and Data mining issues on Big Data

Hadoop Distributed File System– HDFS1
The HDFS is a distributed file system designed to run on commodity hardware.
• Hardware failure is the norm rather than the exception. Therefore, detection of faults and

quick, automatic recovery from them is a core architectural goal of HDFS.
• Applications that run on HDFS need streaming access to their data sets. HDFS is designed

more for batch processing rather than interactive use by users. The emphasis is on high
throughput of data access rather than low latency of data access.

• Applications that run on HDFS have large data sets. A typical file in HDFS is gigabytes to
terabytes in size. Thus, HDFS is tuned to support large files.

• HDFS applications need a write-once-read-many access model for files. A file once created,
written, and closed need not to be changed. This assumption simplifies data coherency
issues and enables high throughput data access.

• A computation requested by an application is much more efficient if it is executed near the
data it operates on. HDFS provides interfaces for applications to move themselves closer to
where the data is located (data locality).

106

Hadoop Distributed File System– HDFS 2
With YARN in HDP 2.0, new applications are emerging that will execute on the same Hadoop
cluster against data in HDFS. This range of applications have different data access patterns and
requirements, going beyond just batch
While in HDFS 1 all disks were treated equally in each node HDFS 2 is technology aware to
take advantage of all storage and memory hardware – spinning disks, solid state drives, RAM
memory and external storage
The cluster system administrator will be able to configure the storage media available on each
node. HDFS will then allow datasets to be given a storage tier preference. Applications will be
able to specify a Storage Medium preference when creating files that supports the
applications’ read work loads.

107

HDFS Federation
Differently from HDFS 1, HDFS 2 implements a federation of name spaces.
• A name space (NS) is a hierarchy of files and directories (i.e. two name spaces can have the

same file name in the same directory). Metadata for each name space are stored on a Name
Node (NN).

• The NN maintains the name space tree and the mapping of data blocks to Data Nodes (DN).
• Name spaces use blocks grouped under a Block Pool. A DN can provide blocks to more than

one name space.

108

Block pool Block pool Block pool

…

NN1 NN2 NN3

DN1 DN2 DNk

HDFS Federation
Scalability: because the NN keeps all the name space and block locations in memory, the
size of the NN heap limits the number of files and also the number of blocks addressable.
This also limits the total cluster storage that can be supported by the NN.
Performance: NN is the single point for storage and management of meta-data, it can
become a bottleneck for supporting a huge number of files, especially a large number of
small files.
Availability: you can separate name spaces of different applications improving the overall
availability of the cluster.
Maintainability, Security & Flexibility: block pool abstraction allows other services to use
the block storage with perhaps a different name space structure. Each name space is
isolated and not aware of the others.

Applications can read/write on more than one name space.

109

Cluster Topology
In order to carry out proper choices the cluster must be aware of the Cluster Topology that is
defined during the cluster setting phase. Block storage and process allocation (data locality) are
tasks that need such information
Nodes are organized in racks and racks are organized in data center
Hadoop models such concepts in a tree-like fashion and computes the distance between nodes
as their distance on the tree.

110data center d2

rack r1 rack r2

data center d1

rack r1 rack r2

cluster

d1 d2

d1

r2 r1 r2

d2 d4d3 d1 d2 d4d3 d1 d2 d4d3 d1 d2 d4d3

r1

Data Blocks & Data Replica
The file content is split into large blocks (default 128 MB), and each block of the file is
independently replicated at multiple Data Nodes in order to improve performance and
robustness.
Replication is aware of the cluster topology. For each data block the name node stores the list
of data nodes storing it. The default replication factor is 3:
• Copy 1 is stored on the node (n1) where the client issued the write command
• Copy 2 is stored on a node (n2) in a rack (r2) different from the one of n1 (off-rack)
• Copy 3 is stored on a node, different from n2, but that belongs to r2

In case of unavailability the system transparently rebalances replicas

111data center d1

rack r1 rack r2

B1

B1

B1

Data Blocks VS OS Blocks
The HDFS data block size ranges between 64MB and 1GB
• The data block is the smallest unit of data addressed in the name node
• Large data blocks reduces the cost for handling the data request at the cluster level rather

than at the node level. In HDFS, those requests go across a network and come with a lot of
overhead: each request has to be processed by the Name Node to figure out where that
block can be found.
• Lets say you have a 1000Mb file. With a 4k data block size, you'd have to make 256,000

requests. If you use 64Mb blocks, the number of requests goes down to 16, greatly
reducing the cost of overhead and load on the Name Node.

• Locally on a data node a data block request will be turned in several OS blocks requests
• The OS blocks (i.e. disk pages) composing a data block can be accessed independently
• If a file is smaller than the data block size it will be stored in a smaller file on the disk

112

Data Locality
Hadoop exploits cluster topology and data block replication to apply the data locality principle

When computations involves large set of data its cheaper (i.e. faster) to move code to data
rather than data to code

The following cases respect the order the resource manager prefers:
1. Process and data on the same node
2. Process and data on the different node of the same rack
3. Process and data on different racks of the same data center
4. Process and data on different racks of the different data centers

113

Name Space & Name Node
Name space meta-data, called the image, includes:
• The name space tree and the mapping of blocks to Data Nodes.
• Inodes record attributes like permissions, modification and access times, name space

and disk space quotas.
Name Node keeps the entire name space image in RAM. The persistent record of the
image stored in the Name Node's local native file system is called a checkpoint.

The Name Node records changes to HDFS in a write-ahead log called the journal in its
local native file system

A secondary name node regularly connects with the primary one and builds snapshots of
the primary name node's directory information, which the system then saves to local or
remote directories. These check-pointed images can be used to restart a failed primary
name node without having to replay the entire journal of file-system actions.

114

High-Availability
Prior to Hadoop 2, the NN was a single point of failure in an HDFS cluster.

In a typical HA cluster, two separate machines are configured as NNs. At any point in time,
exactly one of the NNs is in an Active state, and the other is in a Standby state.

The NN in Standby state keeps informed of the name space meta-data:
• Reading the log files written by the active state NN. In the event of a failover, the Standby

will ensure that it has read all of the edits from the shared storage before promoting itself
to the Active state. This ensures that the namespace state is fully synchronized before a
failover occurs.

• Receiving the data block locations and the heartbeats directly from the DN that are
configured with the location of both Name Nodes.

115

Reading in HDFS

116

Writing in HDFS

117

The Heart Beat Mechanism
Heart Beats are signals DNs periodically (by default 10 minutes) send to the NN to make it
aware that they are active.
Heart Beats absence trigger several actions within the cluster:
• If the NN does not receive the Heart Beats from DN it considers it inactive and it

creates a replica, on different DNs, of the data blocks stored in such node
• The AM has to emit heartbeats to the RM to keep it informed that the AM is alive and

still running.

118

YARN
YARN is the resource-management platform responsible for managing compute resources in
clusters and using them for scheduling of users' applications

While in Hadoop 1 the job scheduling/monitoring functionalities were both taken by the Job
tracker, in Hadoop 2 such functionalities are redistributed between the following agents:
• A global Resource Manager (RM) that is the ultimate authority that arbitrates resources

among all the applications in the system. Resources are negoziated, assigned and used
based on the abstract notion of a resource Container which incorporates elements such as
memory, cpu, disk, network etc. In the first version, only memory is supported.

• A per-node slave, the Node Manager (NM) who is responsible for containers, monitoring
their resource usage (cpu, memory, disk, network) and reporting the same to the RM.

• A per-application Application Manager (AM) is tasked with negotiating resources from the
RM and working with the NMs to execute and monitor the tasks.

119

YARN
The RM has two main components: Scheduler and Applications Manager.

The Scheduler is responsible for allocating resources to the various running applications
subject to familiar constraints of capacities, queues etc. The Scheduler is a pure scheduler
in the sense that:
• it performs no monitoring or tracking of status for the applications.
• it offers no guarantees about restarting failed tasks either due to application failure or

hardware failures.

The ApplicationsManager (AsM) is responsible for accepting job-submissions, negotiating
the first container for executing the application specific AM and provides the service for
restarting the AM container on failure.

120

YARN

121

NM

Cont2,4

RM

NM

NM

AM1

Cont1,1

Cont2,3

NM

NM

Cont1,2

NM

NM

AM2

NM

Cont2,2Cont2,1

Application Master
The AM allows YARN to be more:
Scalable: many functionalities are distributed on several AMs thus the RM is no more a
bottleneck in the cluster. RM is a pure scheduler i.e. it doesn’t attempt to provide fault-
tolerance for resources.
Open: moving all application framework specific code into the AM generalizes the system so it
can now support multiple frameworks such as MapReduce, MPI and Graph Processing.
• Since AM is essentially user-code, RM cannot trust it (i.e. any AM is not a privileged service)
• The YARN system (RM and NM) has to protect itself from faulty or malicious AMs and

resources granted to them at all costs

Depending on the Containers it receives from the RM, the AM may update its execution plan to
accommodate the excess or lack of resources. Container allocation/de-allocation can take place
in a dynamic fashion as the application progresses

122

YARN – Walkthrough
Application execution consists of the following steps:
• Application submission
• Bootstrapping the AM instance for the application
• Application execution managed by the AM instance

1. A client program submits the application, including the
necessary specifications to launch the application-specific
AM itself.

2. The RM assumes the responsibility to negotiate a specified
container in which to start the AM and then launches it.

3. The AM, on boot-up, registers with the RM – the
registration allows the client program to query the RM for
details, which allow it to directly communicate with its own
AM.

123

YARN – Walkthrough
4. During normal operation the AM negotiates appropriate resource containers via the

resource-request protocol.
5. On successful container allocations, the AM launches the container by providing the

container launch specification to the NM. The launch specification, typically, includes the
necessary information to allow the container to communicate with the AM itself.

6. The application code executing within the container then
provides necessary information (progress, status etc.)
to its AM.

7. During the application execution, the client that submitted
the program communicates directly with the AM to get
status, progress updates etc.

8. Once the application is complete, and all necessary work
has been finished, the AM deregisters with the RM and
shuts down, allowing its own container to be repurposed.

124

38

