
INTEGRATING XML SOURCES
INTO A DATA WAREHOUSE ENVIRONMENT

Matteo Golfarelli, Stefano Rizzi
University of Bologna, DEIS

Viale Risorgimento 2, 40136 Bologna, Italy
E-mail: mgolfarelli@deis.unibo.it, srizzi@deis.unibo.it

Boris Vrdoljak
University of Zagreb, FER

Unska 3, 10000 Zagreb, Croatia
E-mail: boris.vrdoljak@fer.hr

Abstract: A data warehousing system is a collection of technologies and tools which enables
knowledge workers to acquire, integrate and flexibly analyze information from different sources
aimed at improving the knowledge assets of the enterprise. The importance of integrating XML data
in data warehousing environments is becoming increasingly high as more organizations view the
web as an integral part of their communication and business. In this paper we propose a semi-
automatic approach for building the conceptual schema for a data mart starting from the DTDs
describing the XML sources. The main issue arising is that, since XML models semi-structured data,
not all the information needed for design can be safely derived. In our approach, this issue is
addressed by querying the source XML documents and, if necessary, by asking the designer’s help.

KEYWORDS: data warehousing and the web, data warehouse design, XML

INTRODUCTION

During the recent years, the enterprises have been asking for support in the process of extracting
useful, concise and handy information for decision-making out of the tons of data stored in their
expensive and complex information systems. A data warehousing system is a collection of
technologies and tools which addresses this issue by enabling knowledge workers (executives,
managers, analysts) to acquire, integrate and flexibly analyze information from different sources
aimed at improving the knowledge assets of the enterprise.

The core of this architecture is a data warehouse (DW), i.e. a data repository oriented to
subjects, integrated and consistent, regularly refreshed to represent temporal evolution. Though the
DW is logically centralized, it often consists of different data marts oriented to specific areas of the
enterprise. From the designer’s point of view, data marts are typically used as building blocks when
creating the warehouse. At the conceptual level, each data mart is organized according to the
multidimensional model and accessed by OLAP (On-Line Analytical Processing) queries [4].

Most approaches to data mart design devised in the literature are based on the schemas of the
operational sources (e.g., [3][6]). Now, as more organizations view the web as an integral part of
their communication and business, and since a large amount of data needed in decision-making
processes is stored in the XML (Extensible Markup Language) data format, the importance of
integrating XML data in data warehousing environments is becoming increasingly high.

XML is used for the exchange of semi-structured data [1]. One common feature of semi-
structured data models is the lack of schema, so that the data is self-describing. However, XML
documents can be associated with and validated against either a Document Type Definition (DTD)
or an XML Schema, both of which allow the structure of XML documents to be described and their
contents to be constrained. DTDs are defined as a part of the XML 1.0 Specification [8], while XML
Schemas have recently become a W3C Recommendation [9]. XML Schemas considerably extend
the capabilit ies of DTDs, especially from the point of view of data typing and constraining. With
DTDs or Schemas, the applications exchanging data can agree about the meaning of the tags and, in
that case, XML reaches its full potential.

In this paper we show how multidimensional design for data warehouses can be carried out
starting directly from an XML source. Different approaches for representing relationships in XML
DTDs are possible, each achieving a different expressive power; on the other hand, since XML
models semi-structured data, not all the information needed for design can be safely derived. Thus,
our contribution in this work is twofold: first, we propose a warehouse-oriented comparison of the
approaches for structuring XML documents by DTDs and Schemas; then, we outline an algorithm in
which the problem of correctly inferring the needed information is solved by querying the source
XML documents and, if necessary, by asking the designer’s help.

The paper is structured as follows. In Section 1 the basics of multidimensional modeling are
given, while in Section 2 the design alternatives for modeling relationships in DTDs and XML
Schemas are discussed. In Section 3 our approach to multidimensional design is presented with
reference to a case study, and in Section 4 the conclusions are drawn.

1. MULTIDIMENSIONAL MODELING

It is now widely recognized that an accurate conceptual design is the necessary foundation for
building a data warehouse which is both well-documented and fully satisfies requirements. In order
to be independent of the specific issues involved in logical and physical modeling, the approach
proposed here is referred to the conceptual level, from which the logical schemas of the data marts
can be easily derived.

Several conceptual models for data warehouses were devised in the literature [6]; they mainly
differ for the graphical representation of concepts, with small differences in expressive power. In
this paper we will adopt the Dimensional Fact Model (DFM) [3], which represents the data mart by
means of a set of fact schemas.

In the following we will briefly discuss the DFM representation of the main concepts of the
multidimensional model with reference to the fact schema CLICK, which describes the analysis of
the web site traffic. The reason for choosing this example is that, due to the significant role now
played by the web in attracting new clients and supporting sales, analyzing the web server traffic
may be crucial for improving the enterprise business. In this context, multidimensional modeling
allows many unpredictable complex queries to be answered, such as:
?? What is the trend for the most and the least accessed pages?
?? Is there a relationship between business events (for instance, sale promotions in an e-commerce

site) and the number of accesses?
In the fact schema shown in Figure 1, the fact CLICK, focus of interest for the decision-making

process, is associated to the measures which describe it, i.e. no. of clicks, and to the dimensions
determining its minimum granularity, namely host, date, hour, and URL. Facts typically correspond
to events occurring dynamically in the enterprise world. Each dimension is the root of a hierarchy
which determines how the fact may be aggregated and selected significantly for the decision-making

process; each hierarchy includes a set of attributes linked by functional dependencies. For instance,
the URL of the file being requested determines the file type, and the hostname or IP address of the
computer requesting the file determines its domain. The values for the domain attribute can be
extracted from the hostname suffix that is indicating either the category (for instance, “.com” for
commercial companies) or the nation.

no. of clicks

CLICK

date

URL

host
(hostname/
IP address)

domain
(category /
 nation) file type

hour

month

holiday

day of week

Figure 1. Fact schema for click-stream analysis

Within the DFM, as in all the other conceptual models, a strong relevance is given to functional
dependencies, since they represent many-to-one relationships between attributes which enable
flexible aggregation of data in OLAP queries [4]. Thus, the main problem in building a conceptual
data mart schema is to identify those relationships in the business domain.

2. REPRESENTING RELATIONSHIPS IN XML

An XML document consists of nested element structures, starting with a root element. Each
element may contain component elements (i.e. sub-elements) and attributes. An XML document is
valid if it has an associated schema, such as a DTD or an XML Schema, and if it conforms to the
constraints expressed in that schema. Since our methodology for conceptual design is based on
detecting many-to-one relationships, in the following we will focus on the way those relationships
can be expressed in the DTD and the XML Schema.

A DTD defines elements and attributes allowed in an XML document, and the nesting and
occurrences of each element. The structure of an XML document is constrained using element-type
and attribute-list declarations. Element-type declarations specify which sub-elements can appear as
children of the element; attribute-list declarations specify the name, type, and possibly default value
of each attribute associated with a given element type. Among the different attribute types, types ID,
IDREF and IDREFS have particular relevance for our approach: the ID type defines a unique
identifier for the element; the IDREF type means that the attribute’s value is some other element’s
identifier; IDREFS means that its value is a list of identifiers. IDREF(S) must match the value of
some ID attribute in the document [1].

Relationships can be specified in DTDs by sub-elements that may have different cardinalities.
The optional character following a child element name or list in the element-type declarations
determines whether the element or the content particles in the list may appear one or more (+), zero
or more (*), or zero or one times (?); the default cardinality is exactly one.

An XML document that contains data about the web site traffic is shown in Figure 2, and a DTD
where relationships are specified by sub-elements is included in the document. Element webTraffic

is defined as a document element, thus becomes the root of XML documents. A webTraffic element
may have many click elements, while in an url element the site sub-element must occur exactly
once, followed by one fileType and many urlCategory sub-elements. A host element may have
either a category or a nation element.

If a one-to-one or one-to-many relationship must be represented in XML, sub-elements with the
above mentioned cardinalities can be used without loss of information. However, given a DTD, we
can follow only one direction of a relationship. For instance, according to the DTD in Figure 2, an
url element may have many urlCategory sub-elements, but it is not possible to find out, from the
DTD, whether an URL category can refer to many URLs. Only by having some knowledge about
the domain described by the DTD, we can conclude that the latter is the case.

<!DOCTYPE webTraffic [
 <!ELEMENT webTraffic (click*)>
 <!ELEMENT click (host, date, time, url)>
 <!ELEMENT host (category | nation)>
 <!ATTLIST host
 hostId ID #REQUIRED>
 <!ELEMENT category (#PCDATA)>
 <!ELEMENT date (#PCDATA)>
 <!ELEMENT time (#PCDATA)>
 <!ELEMENT url (site, fileType, urlCategory+)>
 <!ATTLIST url
 urlId ID #REQUIRED>
 <!ELEMENT site (nation)>
 <!ATTLIST site
 siteId ID #REQUIRED>
 <!ELEMENT nation (#PCDATA)>
 <!ELEMENT fileType (#PCDATA)>
 <!ELEMENT urlCategory (#PCDATA)>
]>

<webTraffic>
 <click>
 <host hostId=”ares.csr.unibo.it”>
 <nation>italy</nation>
 </host>
 <date>23-MAY-2001</date>
 …
</webTraffic>

Figure 2. An XML document with a DTD where relationships are specified by sub-elements

Another way to specify relationships between elements in DTDs is by means of ID and
IDREF(S) attributes. The way these attributes operate resembles the key and foreign key mechanism
used in relational databases, with some important differences and limitations. Using IDREF(S), the
participating elements cannot be constrained to be of a certain element type. Further, though the
value of an ID attribute is unique within the whole document, element types are not required to have
an ID, and even if an element type has an ID, its usage may be optional. For these reasons, there is
no means to actually constrain the allowed relationships by the ID/IDREF(S) mechanism.

XML Schemas give more accurate representation of the XML structure constraints than DTDs;
in particular, the cardinality can be specified in more detail. Further, XML Schemas introduce more
powerful and flexible mechanisms for modeling inter-concept relationships, similar to the relational

concept of foreign key. We will not discuss further Schemas since, though their expressive power is
different, with reference to multidimensional design they allow the same knowledge to be captured
as sub-elements in DTDs.

3. CONCEPTUAL DESIGN FROM XML SOURCES

In this section we propose a semi-automatic approach for building the conceptual schema of a
data mart starting from the XML sources. Of the XML approaches for representing relationships, we
have chosen sub-elements in DTDs for the presentation of our methodology, since Schemas are still
not as widely used as DTDs; however, the methodology is essentially the same when dealing with
Schemas. We do not consider the ID/IDREF(S) approach in DTDs, since it is not precise and useful
enough in constraining relationships.

Starting with the assumption that the XML document has a DTD and conforms to it, the
methodology consists of the following steps:

1. Simplifying the DTD.
2. Creating a DTD graph.
3. Choosing facts.
4. For each fact:
 4.1 Building the attribute tree from the DTD graph.
 4.2 Rearranging the attribute tree.
 4.3 Defining dimensions and measures.

In the following paragraphs we will describe the steps referring to the web site traffic example.

Simplifying the DTD
The sub-elements in DTDs may have been declared in a complicated and redundant way.

However, those details of a DTD can be simplified [7]. The transformations for simplifying a DTD
include converting a nested definition into a flat representation: for instance, in the web site traffic
example, host(category?nation) is transformed into host(category?,nation?).
Further, the sub-elements having the same name are grouped, and many unary operators are reduced
to a single unary operator. Finally, all “+” operators are transformed into “*” operators.

webTraffic

*

click

date timehost url

category nation

*hostId site

siteId

fileType
?

urlCategory

urlId?

Figure 3. DTD graph for web site traffic analysis

Creating a DTD graph
After simplifying the DTD, a DTD graph representing its structure can be created as described in

[5] and [7]; its vertices correspond to elements, attributes and operators in the DTD. Attributes and
sub-elements are not distinguished in the graph since, in our methodology, they are considered as
equivalent nesting mechanisms. The DTD graph for the DTD in Figure 2 is given in Figure 3.

Defining facts
The designer chooses one or more vertices of the DTD graph as facts; each of them becomes the

root of a fact schema. In our example, we choose the click vertex as the only interesting fact.

Building the attribute tree
The vertices of the attribute tree are a subset of the element and attribute vertices of the DTD

graph. The algorithm to build the attribute tree is sketched in Figure 4.

root=newVertex(F);
// newVertex(<vertex>) returns a new vertex of the attribute tree
// corresponding to <vertex> of the DTD graph
expand(F,root);

expand(E,V):
// E is the current DTD vertex, V is the current attribute tree vertex
{ for each child W of E do
 if W is element or attribute do
 { next=newVertex(W);
 addChild(V,next); // adds child W to V
 expand(W,next);
 }
 else
 if W="?" do
 expand(W,V);
 for each parent Z of E such that Z is not a document element do
 if Z="?" or Z="*" do
 expand(Z,V);
 else
 if not toMany(E,Z) do
 if askDesignerToOne(E,Z) do
 { next=newVertex(Z);
 addChild(V,next);
 expand(Z,next);
 }
}

Figure 4. Algorithm for building the attribute tree

The attribute tree is initialized with the fact vertex F; then, it is enlarged by recursively
navigating the functional dependencies between the vertices of the DTD graph. Each vertex V
inserted in the attribute tree is expanded as follows (procedure expand):

1. For each vertex W that is a child of V in the DTD graph :
 When examining relationships in the same direction as in the DTD graph, the cardinality

information is expressed either explicitly by “?” and “*” vertices or implicitly by their absence. If
W corresponds to an element or attribute in the DTD, it is added to the attribute tree as a child of

V; if W is a “?” operator, its child is added to the attribute tree as a child of V; if W is a “*”
operator, no vertex is added.

2. For each vertex Z that is a parent of V in the DTD graph:
 When examining relationships in this direction, vertices corresponding to “*” and “?” operators

are skipped since they only express the cardinality in the opposite direction. Since the DTD
yields no further information about the relationship cardinality, it is necessary to examine the
actual data by querying the XML documents conforming to the DTD. This is done by procedure
checkToMany, which counts the number of distinct values of Z corresponding to each value of
E. If a -to-many relationship is detected, Z is not included in the attribute tree. Otherwise, we still
cannot be sure that the cardinality of the relationship from E to Z is -to-one. In this case, only the
designer can tell, leaning on her knowledge of the business domain, whether the actual
cardinality is -to-one or -to-many (procedure askDesignerToOne). Only in the first case, Z is
added to the attribute tree. The reason why document elements are not considered is that they
have only one instance within XML documents, thus they have no interest for aggregation and
should not be modeled in the data mart.

As to the problem of checking cardinalities in XML documents, XML query languages

supporting aggregate queries can be used. For instance, in W3C XQuery [10] the use of the distinct
function is proposed for that purpose, while the use of the group-by function is proposed in [2]. The
main question arising is how many XML documents we must see to reasonably confirm our
presumption that the cardinality is -to-one.

In our example, no uncertain relationships are navigated. Vertex urlCategory is not added to the
attribute tree because it is a child of a “*” vertex in the DTD graph. The resulting attribute tree for
the web site traffic analysis example is given in Figure 5.

host url file type

click

site

nation

 nation

host category

hostId

urlId

siteId

date time

Figure 5 . Attribute tree derived from the DTD graph

Rearranging the attribute tree
Some further arrangements should be made to this tree: for instance, since there is no need for

the existence of both host and hostId vertices, only host should be left; the same logic should be
applied for urlId and siteId. Finally, the time attribute is replaced with the hour attribute.

Defining dimensions and measures.
Dimensions and measures must be selected among the children of the root. In our example, the

attributes chosen as dimensions are host, date, hour and URL; number of clicks, determined by
counting the clicks from the same host to the same URL on a given date and hour, is chosen as a
measure. Some further minor arrangements must be made in order to obtain the fact schema in
Figure 1; in particular, the date dimension is enriched by building a hierarchy which includes

attributes month, day of week, and holiday. Besides, the host category and nation optional attributes
are replaced by attribute domain, which indicates either the category or the nation of the host.

4. CONCLUSIONS

In this paper we described a semi-automatic approach to conceptual design of a data mart from
an XML source. We showed how the semi-structured nature of the source increases the level of
uncertainty on the structure of data as compared to structured sources such as database schemas,
thus requiring access to the source documents and, possibly, the designer’s help in order to detect -
to-one relationships. The approach was described with reference to the case in which the sources are
constrained by a DTD using sub -elements, but it can be adopted equivalently when XML Schemas
are considered.

We believe that using XML sources for feeding data warehouse systems will become a standard
in the next few years. Thus, designing the data warehouse directly from the XML sources may
reduce the risk of losing relevant information during the translation from XML to relational.

REFERENCES

[1] S. Abiteboul, P. Buneman, D. Suciu: Data on the Web: From Relations to Semistructured Data
and XML. Morgan Kaufman Publishers (2000).
[2] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, D. Suciu. A Query Language for XML. Proc.
8th World Wide Web Conference (1999).
[3] M. Golfarelli, D. Maio, S. Rizzi. The Dimensional Fact Model: a conceptual model for data
warehouses. Int. Jour. of Cooperative Inf. Systems 7, 2&3 (1998).
[4] R. Kimball. The data warehouse toolkit. John Wiley & Sons (1996).
[5] D. Lee, W. W. Chu. Constraints-preserving Transformation from XML Document Type
Definition to Relational Schema. Proc. 19th ER, Salt Lake City (2000).
[6] M. Blaschka, C. Sapia, G. Höfling, B. Dinter. Finding Your Way through Multidimensional
Data Models. DEXA Workshop (1998).
[7] J. Shanmugasundaram, et al. Relational Databases for Querying XML Documents: Limitations
and Opportunities. Proc. 25th VLDB, Edinburgh (1999).
[8] World Wide Web Consortium (W3C). XML 1.0 Specification.
http://www.w3.org/TR/2000/REC -xml-20001006.
[9] World Wide Web Consortium (W3C). XML Schema. http://www.w3.org/XML/Schema.
[10] World Wide Web Consortium (W3C). XQuery 1.0: An XML Query Language (Working Draft),
http://www.w3.org/TR/xquery/.

