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(Extended Abstract)

Abstract. Accurately estimating the cardinality of aggregate views is crucial for logical and

physical design of data warehouses. While the warehouse is under development and data are

not available yet, the approaches based on accessing data cannot be adopted. This paper

reports on the progress of an ongoing research aimed at devising a comprehensive approach to

estimate the cardinality of views based on a-priori information derived from the application

domain. The results we present concern the computation of upper and lower bounds for

the cardinality of a view considering the functional dependencies between attributes of the

multidimensional scheme and a set of cardinality constraints expressed on some other views.

We propose a bounding strategy which achieves an e�ective trade-o� between the tightness

of the bounds produced and the computational complexity, and outline a branch-and-bound

approach to compute it. Finally, we discuss some open issues and sketch our future research.

1 Introduction and Motivation

The multidimensional model is the foundation for data representation and querying in multidi-

mensional databases and data warehouses [AGS97]. It represents facts of interest for the decision

process into cubes in which each cell contains numerical measures which quantify the fact from

di�erent points of view, while each axis represents an interesting dimension for analysis. For in-

stance, within a 4-dimensional cube modeling the phone calls supported by a telecommunication

company, the dimensions might be the calling number, the number called, the date, and the time

segment in which the call is placed; each cube cell could be associated to a measure of the total

duration of the calls made from a given number to another on a given time segment and date.

The basic mechanism to extract signi�cant information from the huge quantity of �ne-grained

data stored in base cubes is aggregation according to hierarchies of attributes rooted in dimensions

[GL97]. In most application cases, cubes are signi�cantly sparse (for instance, most couples of

telephone numbers are never connected by a call in a given date), and so are the aggregate views.

Accurately estimating the actual cardinality of views is crucial for logical and physical design

as well as for query processing and optimization. In particular, after the data warehouse has

been loaded, this estimation activity can be carried out by using well-known techniques based for

instance on histograms [MD88] and sampling [HO91]. However, such techniques cannot be applied

at all if the data warehouse is still under development, and the estimation of view cardinalities

is needed for design purposes. For instance, consider the view materialization problem, where the
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aggregate views which are the most useful in answering the workload queries have to be selected

for materialization (see [TB00] for a survey). Since the number of possible views which can be

derived by aggregating a cube is exponential in the number of attributes, most approaches assume

that a constraint on the total disk space occupied by materialization is posed, and attempt to

�nd the subset of views which contemporarily satis�es this constraint and minimizes the workload

cost [GR00,Gup97,HRU96]. Another case where estimation of view cardinalities is relevant is index

selection [GHRU97].

In the data warehouse literature, the problem of cardinality estimation when data are not avail-

able is commonly addressed by assuming that data are uniformly distributed and by relying only

on the cardinalities of the base cube and of the single attributes [RS97,SDNR96]. Unfortunately,

when data are skewed, the resulting cardinalities turn out to be signi�cantly overstimated.

This paper reports on the progress of an ongoing research aimed at devising a comprehensive

approach to estimate the cardinality of views based on a-priori information derived from the

application domain. The results we present here concern the computation of upper and lower

bounds for the cardinality of a view considering the functional dependencies between attributes of

the multidimensional scheme and a set of cardinality constraints expressed on some other views.

In particular, we propose a bounding strategy which achieves an e�ective trade-o� between the

tightness of the bounds produced and the computational complexity, and outline a branch-and-

bound approach to compute it.

2 Background and Working Example

De�nition 1 (Dimensional Scheme). We call dimensional scheme D a couple (U;F) where U

is a set of attributes and F = fAi ! AjjAi; Aj 2 Ug is a set of functional dependencies which

relate the attributes of U into a set of pairwise disjoint directed trees. We call dimensions the

attributes Ak 2 U in which the trees are rooted, i.e., such that 8Ai 2 U (Ai ! Ak) 62 F ; let

dim(D) � U denote the set of dimensions of D.

De�nition 2 (View). Let D = (U;F) be a dimensional scheme. We call view on D any subset

of attributes V � U such that 8Ai; Aj 2 V (Ai ! Aj) 62 F+, where F+ denotes the set of all

functional dependencies logically implied by F .

It should be noted that we are using the term view to denote the set of grouping attributes used

for aggregation, while the \actual" views will typically include also one or more measures. This

slight abuse in terminology is possible since we are only interested in determining the cardinality

of views, which only depends on the grouping attributes.

De�nition 3 (Roll-up). Given the set VD of all possible views on D, we de�ne on VD the roll-up

partial order � as follows: V�W i� 8Ai 2 V 9Aj 2 W j(Aj ! Ai) 2 F+, i.e., i� W ! V . We

call multidimensional lattice for D the corresponding lattice, whose top and bottom elements are

dim(D) and the empty view fg, respectively. We will denote with V�W the least upper bound (lub)

of V and W ; given a set of views S, we will briey denote their lub with �(S).



Example 1. A dimensional scheme Calls modeling the phone calls supported by a telecommunica-

tion company might include:

U = fdate;week;month; year; sourceNumber; sourceDistrict; sourceState; destNumber;

destDistrict; destState; timeSegmentg

F = fdate! week; date! month;month! year; sourceNumber ! sourceDistrict;

sourceDistrict ! sourceState; destNumber ! destDistrict; destDistrict! destStateg

thus having dim(D) = fdate; sourceNumber; destNumber; timeSegmentg as dimensions. Examples of

views on the Calls scheme are V = fmonth; sourceNumber; destStateg, W = fmonth; sourceStateg

and Z = fyear; sourceDistrictg. It is W�Z = fmonth; sourceDistrictg. The roll-up relationships

between these views are the following:W�W�Z, Z�W�Z, and W�Z�V�dim(D). 2

3 Approach Overview

The framework for this work is the logical design of multidimensional databases carried out o�-

line, i.e., assuming that the source data cannot be directly queried to estimate the cardinality of

multidimensional views. For simplicity, in the following we consider that estimates are needed for

the purpose of view materialization, thus reliable information on the size of the candidate views

has to be supplied to the materialization algorithm.

As sketched in Figure 1, whenever the materialization algorithm requires information about a

candidate view V , our approach works in two steps. First, the bounder uses the set C of cardinality

bounds
on cardinalities
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Fig. 1. Overall architecture for logical design

constraints supplied by the user to determine e�ective bounds for the cardinalities of a proper set

of views; then, the estimator uses these bounds to derive a probabilistic estimate for the cardinality

of V . Note that this two-steps approach generalizes well-known parametric models for the estima-

tion of the cardinality of relational queries [MCS88], and in particular those for projection size

estimation [CM95], for which bounds are typically given as input parameters. Relevant examples

of cardinality constraints that may be considered are the cardinality w of a viewW , a lower and/or

an upper bound (w� and w+, respectively) to the cardinality of W , and the ratio between the

cardinalities of two views W1 and W2.



The set C, together with the dimensional scheme D, univocally determines two bounds for the

cardinality of V , which are called the greatest lower bound and the least upper bound, denoted as

v� and v+ , respectively.1 The interpretation of such bounds is as follows: (1) in each instance I of

D that does not violate any constraint in C, the cardinality v of V is such that v 2 [v�; v+]; and

(2) there exists an instance I� (I+) compatible with C where v equals v� (v+).

Computing the bounds implied by C turns out to be a challenging combinatorial problem, even

for \simple" forms of cardinality constraints. For instance, it is known that the problem is NP-hard

for arbitrary patterns of functional dependencies [CM92]. Furthermore, the actual computational

e�ort needed to compute these bounds might limit applicability in real-world cases. For this reason,

the bounder is built around the concept of bounding strategy. A bounding strategy s is characterized

by a couple of bounding functions that, given C;D, and V , compute bounds v�
s
and v+

s
such that

v�
s
� v� and v+ � v+

s
both hold. In other terms, a bounding strategy never computes bounds

which are more restrictive than the ones logically implied by the input constraints, trading-o�

accuracy for speed of evaluation. We say that a strategy s is decoupled i� computing v+
s

for an

arbitrary view V only requires the knowledge of upper bounds w+
s

of other views W , but no

knowledge of lower bounds w�
s , and vice versa.

Example 2. Consider again the telecommunication company domain, which serves 107 tele-

phone numbers during a 103 days period on 5 daily time segments, and let V =

fsourceNumber; destNumber; timeSegmentg. Using a simple bounding strategy, it is derived that

v � 107, since at least one call is made from each number, and v � 5 � 1014, since at most each

number calls each other number on each time segment. If the cardinality of the base cube is known,

for instance it is 1011, a bounding strategy could improve the upper bound of V to 1011, since the

cardinality of any aggregate view cannot exceed that of the base cube. Suppose now that the expert

of the application domain is capable of providing an additional information: the number of distinct

source-destination couples is at most 109. From this, we can infer that v � 5� 109. 2

Turning to the estimator, our framework supports di�erent probabilistic models. A probabilistic

model is a function m that, given C;D, V , as well as bounds computed by the bounder, provides

an estimate for the cardinality of V . In general, this step can use information from C that is not

suitable to derive bounds. Typically this is the case where a cardinality constraint represents an

average value (e.g., the number of calls originating on the average from a given number on each

day is 10). For lack of space, in this paper we do not discuss probabilistic models.

4 A Decoupled Bounding Strategy

In this section we focus on issues related to computing upper and lower bounds by means of a

decoupled bounding strategy and assuming that the set C just consists of a set of view cardinalities.

In particular, for each Ai 2 U we assume that card(Ai) = ai 2 C. This assumption, which is

perfectly reasonable in all application domains, is necessary in order to guarantee that at least one

upper/lower bound can be determined for each view. In addition, C may also include the cardinality

wj of some other view Wj. We say that a view is ground i� its cardinality is in C.

The basic observation underlying the determination of e�ective bounds for view cardinalities is

that the multidimensional lattice induces an isomorphic structure over such cardinalities. Let I be
1 For simplicity of notation, we omit the dependence of bounds on D and C.



an instance of D, and let v stand for the cardinality of view V in I. From De�nition 3 it follows

that V�W implies v � w 8I, since W ! V holds. This inequality also applies to bounds.

Lemma 1. If V�W , then v� � w� and v+ � w+.

4.1 Upper Bounding

The strategy we present strongly relies on the concept of cover of a view. Let P(VD) be the set of

all subsets of VD.

De�nition 4 (Cover). Let V 2 VD be a view on D and S = fW1; : : :Wmg 2 P(VD) be a set

of views. S is called a V -cover i� V ��(S). A V -cover is said to be ground when all the views it

includes are ground.

Example 3. In the Calls scheme, let V = fsourceDistrict; destDistrict; timeSegment;monthg and C =

fw0; w1; w2; w3; w4; w5g where

W0 = fsourceNumber,destNumber,timeSegment,dateg W3 = ftimeSegment,monthg

W1 = fsourceNumber,destDistrict,timeSegment,dateg W4 = fsourceDistrict,destDistrict,dateg

W2 = fsourceState,destDistrict,timeSegmentg W5 = fsourceNumber,dateg

Some examples of ground V -covers are S1 = fW1g, S2 = fW2;W4g, S3 = fW3;W4g,

S4 = fW2;W5g; in fact, it is V ��(S1) = �(S4) = W1, V ��(S2) = �(S3) =

fsourceDistrict; destDistrict; date; timeSegmentg. In Figure 2 the roll-up relationships between these

views are depicted. 2

W0

V

W2 ⊕ W4 = W3 ⊕ W4

W1

W5

W4

W3W2

Fig. 2. Roll-up relationships between views in Example 3

The notion of cover leads to generalize Lemma 1 to the case where several views at a time are

used to bound from above the cardinality of V . Intuitively, this corresponds to viewing the problem

as the one of determining the upper bound of the size of the (natural) join of the views in S.

Lemma 2. Let V be a view and S = fW1; : : : ;Wmg be a V -cover. Then: v � s+
def
=
Qm

j=1w
+
j .

Coherently with Lemma 2, the cover-based strategy cb computes upper bounds as:

v+
cb
=

8<
:
v if v 2 C;

minfs+
cb
j S 2 P(VD); V��(S)g if v 62 C:

(1)

where s+
cb
=
Qm

j=1w
+

j;cb.



Even for schemes with only a few attributes, computing v+
cb

by directly using Equation 1 is not

practically feasible, since the size of P(VD) is O(22
N

), where N is the number of attributes in D.

Fortunately, we can limit ourselves to consider only a restricted set of V -covers, which are called

minimal ground V -covers and provide useful, non redundant, bounds. To see how minimal ground

V -covers are determined, we need to consider two orthogonal aspects: a domination relationship

between sets of views and the input information, C. While the former induces a partial order on

the bounds obtainable from V -covers, regardless of the speci�c input C, the latter can be used to

restrict the set of useful V -covers to only those consisting of ground views.

De�nition 5 (Domination). Let S1 = fW1;1; : : :W1;mg and S2 = fW2;1; : : :W2;ng be two sets

of views in P(VD). We say that S1 dominates S2, written S1vS2, i� S2 can be partitioned into m

subsets S2;1; : : :S2;m such that W1;i��(S2;i) 8i = 1; : : : ;m.

For instance, in Example 3 it is S1vS4, since W1��(S4). Note that if SivSj then �(Si)��(Sj )

necessarily holds, whereas the opposite is not true in general (e.g., S3 6 vS4 though �(S3)��(S4)).

Lemma 3. Let S1 and S2 be two sets of views. If S1vS2 then s+
1;cb � s+

2;cb.

Lemma 4. Let S be a non-ground V -cover. Then there exists a ground V -cover S1 such that

s+
1;cb � s+

cb
.

De�nition 6 (Minimal Ground Cover). A ground V -cover S1 is minimal i� there is no other

ground V -cover S2 such that S2vS1 holds.

Theorem 1 (SuÆciency of Minimal Ground Covers). Let GC(V ) be the set of minimal

ground V -covers. Then minfs+
cb
j S 2 P(VD); V��(S)g = minfs+

cb
j S 2 GC(V )g.

Example 4. With reference to Example 3, S1, S2, S3, and S5 = fW2; fsourceDistrictg; fmonthgg

are minimal ground V -covers. 2

Although Theorem 1 states that v+
cb

can be determined by considering only minimal ground

V -covers, De�nition 5 does not directly provide a constructive rule to generate them. Nevertheless,

based on the results obtained so far, it is possible to derive some rules aimed at reducing signi�cantly

the cardinality of the superset of minimal ground V -covers to be generated:

1. A ground view W such that V �W is a ground V -cover (from De�nition 4).

2. A ground view W such that arity(W ) = 1 and W \ V = ; does not belong to any minimal

ground V -cover2 (from De�nitions 5 and 6).

3. A ground view W such that arity(W ) > 1 and 8W 0 for which W 0�W it is arity(W 0 \ V ) < 2

does not belong to any minimal ground V -cover (since C includes the cardinalities of all the

attributes).

4. If S is a ground V -cover, no set S0 such that S � S0 is a minimal ground V -cover (from

De�nition 5).

5. If a minimal ground V -cover S contains a ground view W , it cannot contain any other ground

view W 0 such that W�W 0 (from De�nitions 5 and 6).

2 arity(W ) denotes the number of attributes in W .



We approach the problem of computing the upper bound for a view V given a set of constraints

C using a branch-and-bound algorithm which generates a superset of the minimal ground V -covers

by solving a set of subproblems that repeatedly add new views to the partial solution obtained

so far. Each subproblem is associated to: (1) a partial solution S containing all the ground views

selected so far to build a ground V -cover; (2) an ordered set T = fWig of the possible ground views

to be added to S and compatible with S with reference to the rules above; (3) a function lb(S) which

returns a lower bound of the cardinality of the ground V -covers that can be obtained by extending

S. The order on T is obtained by considering �rst the ground views for which the intersection with

V has higher arity. It is remarkable that, if we impose that a partial solution containing a ground

view Wi can be extended only with ground views Wj such that j > i, inducing a total order on T

avoids the same cover to be generated twice; furthermore, the chosen order determines an heuristic

criterion for generating the \most promising" covers �rst.

Example 5. We are interested in estimating V = fsourceDistrict; destDistrict; timeSegment;monthg

in the Calls scheme. Table 1 shows how the upper bound of v improves as additional cardinality

constraints are supplied as input (see Example 3). The result when all six views are included in C

(besides the cardinality of the views with arity 1) is obtained by building only 6 complete ground

V -covers. Seven partial solutions are abandoned since dominated by the current best solution. 2

Wi W0 W1 W2 W3 W4 W5

wi 1011 1010 103 1:8� 102 104 6� 109

v
+

cb
1011 1010 9:36� 106 9:36� 106 1:8� 106 1:8� 106

Table 1. Improving upper bounds of v for increasing domain-derived information

4.2 Lower Bounding

For a decoupled bounding strategy, there is a striking asymmetry between computing upper and

lower bounds. In fact, while computing v+
cb

can be cast as a \bounding-a-join-size" problem, the

computation of v�
cb

corresponds to a \bounding-a-projection-size" problem, where the relevant

di�erence is that projection is a unary operator. This leads to a much simpler situation to deal

with, in which only Lemma 1 can be exploited and v�
cb

is computed as:

v�
cb
= maxfw j w 2 C;W�V g : (2)

Di�erently from upper bounds, no combinatorial issues arise in computing lower bounds through

this strategy; thus, complexity is linear in the cardinality of C.

5 Conclusions and Open Issues

In this paper we have shown how cardinality constraints derived from the application domain may

be employed to determine e�ective bounds on the cardinality of aggregate views. In order to devise

a comprehensive approach, several issues still need to be investigated. In the following we briey

discuss those we believe to be crucial:



{ Bounding strategies. The bounds we derive are not necessarily the tightest possible ones. In

fact, more complex and e�ective bounding strategies can be de�ned to the detriment of com-

putational speed. Basically, in these strategies the concept of cover is extended by considering

more complex patterns of views, where upper and lower bounds are used jointly.

{ Cardinality constraints. The input knowledge for our technique may be extended by consider-

ing di�erent kinds of cardinality constraints which are typically known to the experts of the

application domain. For instance, knowing that each telephone number calls in the average 10

other numbers on each day, allows the cardinality of view fsourceNumber,destNumber,dateg to

be estimated as 10 times the cardinality of view fsourceNumber,dateg.

{ Probabilistic estimates. Assuming that e�ective bounds have been derived, cardinality esti-

mation will be based on a probabilistic model. The most used model to this end is the one

described in [Car75], which bases its estimate for view V on the maximumcardinality of V and

on the cardinality of a view W such that V�W . Within this topic, we will work on improving

this rough estimate by taking all the information collected so far into account.
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