
ANTS for Data Warehouse Logical Design

Vittorio Maniezzo ∗ Antonella Carbonaro ∗ Matteo Golfarelli †

Stefano Rizzi †

∗ Department of Computer Science
University of Bologna, Italy

Email: {maniezzo, carbonar}@csr.unibo.it

† DEIS
University of Bologna, Italy

Email: {mgolfarelli, srizzi}@deis.unibo.it

1 Introduction

The problem addressed in this research, namely the vertical fragmentation problem (VFP), arises in
the context of data warehouse design, when trying to minimize the system average query response
time. It is a combinatorial optimization problem of significant actual interest which has so far received
little attention from the optimization community. This paper describes the application of the ANTS
approach, a variant of the Ant Colony Optimization (ACO) paradigm, to the VFP.

Data warehouses are primary commodities in the current software market, supporting the transfor-
mation of huge volumes of data into actionable business information, improving targeted marketing and
business process re-engineering for customer value management. A data warehouse permits to retrieve
summary data, derived from those present in operational information systems. Fundamental issues are
flexible query interface and fast query response.

The design of a data warehouse starts with the identification of relevant data in the company
information system; these data must be integrated, reorganized and possibly aggregated in order to
be of effective use. After that, conceptual, logical and physical design phases are encompassed. The
problem addressed in this paper belongs to logical design and has the objective of minimizing the query
response time by reducing the number of disk pages to be accessed. This may be obtained by defining
appropriate tables of aggregated data (views) and by including in them only the data which are actually
requested by some query.

Storing aggregated data obviously leads to redundancy, thus generating a trade-off between effective-
ness and amount of memory to be allocated. The algorithm presented in this paper directly addresses
the optimization of this trade-off. To the best of our knowledge, no effective algorithmic solution has
been presented so far in the literature for the problem of interest. The problem has been first described
in [10], where no optimization algorithm is proposed. In [2], a related problem is described, aimed at
building data indices to enhance performance in parallel implementations of data warehouses. In [5]
the problem is formalized and a branch-and-bound approach is devised. A preliminary report on this
research has been presented in [9].



MIC’2001 - 4th Metaheuristics International Conference 2

2 The Vertical Fragmentation Problem

2.1 Background

The most widely accepted modeling technique for data warehouses, presented in [7], denotes data by
means of an n-dimensional (hyper)cube, where each dimension corresponds to a characteristic of the
data. Each element of the cube is usually associated with quantitative attributes, called measures,
which are computed from the operational information system. Furthermore, each dimension is related
to a set of attributes defining a hierarchy of aggregation levels. Elements of the cube can then be
aggregated along these hierarchies, in order to retrieve summary values for measures.

More formally, a cube f is a 4-tuple < Patt(f),Meas(f), Attr(f), R >, where:

• Patt(f) is a set of dimensions;

• Meas(f) is a set of measures;

• Attr(f) is a set of attributes (being the dimensions particular attributes, we have Patt(f) ⊆
Attr(f));

• R is a set of functional dependencies ai → aj defined between pairs of attributes in Attr(f),
where ai → aj denotes both the case in which ai directly determines aj and the case in which ai
transitively determines aj .

For example, a 3-dimensional cube with dimensions Store, Product and Date might represent the
sales in a chain store; the measures could be Quantity and Revenue. In this case, for each product, each
element of the cube would measure the quantity sold in one store in one day and the corresponding
revenue. A possible aggregation could be that computing the total monthly revenue for each category
of products.

The design of a data warehouse encompasses conceptual, logical and physical design. The objective
of logical design, relevant for this paper, is the minimization of query response time. This is obtained
by pre-defining the set of queries, called workload, that the system is likely to be asked to answer more
often. Taking into account all possible queries is computationally infeasible, but it is possible to identify
a reduced set of significant and frequent queries which are considered to be representative of the actual
workload.

Given a cube f , an aggregation pattern (or simply a pattern) on f is a set p, p ⊆ Attr(f), such that
no functional dependency exists between any pair of attributes in p: ∀ai ∈ p(6 ∃aj ∈ p; ai → aj). Each
pattern on f determines a possible view to be materialized. Given a workload expressed as a set of
queries, we will call candidate views those being potentially useful to reduce the workload execution
cost. Let Cand(f) be the set of the candidate views for cube f ; each v ∈ Cand(f) is defined by its
pattern Patt(v). For each cube f , the view at pattern Patt(f) is always a candidate. We will denote
with P the set of patterns of all the candidate views on all the cubes involved in the workload.

In presence of a memory constraint, only a subset of the candidate views can be actually materialized.
Several techniques have been proposed to select the subset to be materialized in order to optimize the
response to the workload [6]. All the approaches in the literature store, for each view v ∈ Cand(f),
all the measures in Meas(f). In this paper, we evaluate how the solution can be further optimized by
materializing views in fragments including measures requested together by at least one query. In fact,
some queries on f may require a subset of Meas(f); thus, it may be worth materializing fragments
including only a subset of Meas(f) (partitioning). On the other hand, the access costs for some
queries may be decreased by materializing fragments which include measures taken from different
cubes (unification).

Porto, Portugal, July 16-20, 2001



MIC’2001 - 4th Metaheuristics International Conference 3

With the term fragmentation we denote both partitioning and unification of views. The approach
we propose in this paper is aimed at determining an optimal set of fragments to materialize from the
candidate views. In order to specify objective and constraints of fragmentation, some further notation
must be introduced.

Given a cube f and a workload Q, it is possible to partition the measures Meas(f) into subsets
(minterms) such that all the measures in a minterm are requested together by at least one query in Q
and do not appear separately in any other query in Q. We call terms the sets of measures obtained as
the union of any combination of minterms, even from different cubes (of course, all minterms are also
terms). We denote with T the set of all terms.

The fragmentation problem can now be modeled over a fragmentation array Ξ = [xijk], which is a
tridimensional array of 0-1 binary variables whose dimensions correspond to the queries qi ∈ Q, to the
patterns pj ∈ P and to the terms tk ∈ T , respectively. Each cell of the array corresponds to a fragment
candidate to materialization; setting xijk = 1 means stating that query qi will be answered accessing
(also) the fragment defined by the measures in tk and pattern pj .

A value assignment for variables xijk is feasible if: (i) for every query, each measure required is
obtained by one and only one fragment, and (ii) for every pattern, each measure is contained in one
and only one fragment. The objective function to minimize is based on the number of disk pages to
access in order to satisfy the workload.

2.2 Mathematical formulation

Problem VFP can be formulated as follows. Let Q be the index set of the queries in the workload and
P the index set of the patterns in P . For every query qi, i ∈ Q, Pi denotes the subset of P containing
the indices of all patterns pj which are useful to solve query qi and for which pj = Patt(v), where v is
a candidate view for at least a cube f involved in query qi, i.e., v ∈ Cand(f).

The index set T contains the indices of the terms in T ; we will further denote by Ti the subset of
indices of the terms which contains at least one measure in Meas(qi), i ∈ Q.

Problem VFP asks to minimize the workload execution cost, computed as the sum of the costs cijk
for obtaining, for each query i ∈ Q, the relevant term k ∈ Ti from pattern j ∈ Pi.

Let xijk be a 0-1 variable which is equal to 1 if and only if query i is executed on pattern j to get
the term k. Let yjk be a 0-1 variable which is equal to 1 if and only if the pattern j is used to get the
term k, in which case an amount bjk of disk space out of the maximum available space amount B is
needed. Problem VFP is then as follows.

(V FP ) z(V FP ) = Min
∑
i∈Q

∑
j∈Pi

∑
k∈Ti

cijkxijk (1)

s.t.
∑
j∈Pi

∑
k∈Ti

xijk = 1 i ∈ Q (2)

∑
k∈T

yjk ≤ 1 j ∈ P (3)

xijk ≤ yjk i ∈ Q, j ∈ P, k ∈ Ti (4)∑
j∈P
k∈T

bjkyjk ≤ B (5)

xijk ∈ {0, 1} i ∈ Q, j ∈ P, k ∈ T (6)
yjk ∈ {0, 1} j ∈ P, k ∈ T (7)

Porto, Portugal, July 16-20, 2001



MIC’2001 - 4th Metaheuristics International Conference 4

Equations (2) impose that each measure specified in a query must be obtained by one and only one
pattern (thus, implicitly, that each query in the workload must be satisfied); inequalities (3) require
that, in each pattern, a measure can belong to only one term; inequalities (4) link the x and y variables
and inequality (5) is the memory knapsack constraint. Finally, constraints (6) and (7) are the integrality
constraints.

By a linear relaxation of integrality constraints we get problem LVFP whose optimal solution value
z(LV FP ) constitutes a lower bound to z(V FP ).

3 ANTS applied to vertical fragmentation

ANTS [8] is a technique to be framed within the ACO paradigm, whose first member called Ant System
was initially proposed by Colorni, Dorigo and Maniezzo [1], [3], [4]. The main underlying idea of all
ACO algorithms is that of parallelizing search over several constructive computational threads, all based
on a dynamic memory structure incorporating information on the effectiveness of previously obtained
results.

An ant is defined to be a simple computational agent, which iteratively constructs a solution for
the problem to solve. Partial problem solutions are seen as states; each ant moves from a state ι to
another one ψ, corresponding to a more complete partial solution.

At each step σ, each ant k computes a set Aσk(ι) of feasible expansions to its current state, and
moves to one of these according to a probability distribution specified as follows.

For ant k, the probability pkιψ of moving from state ι to state ψ depends on the combination of two
values:

1. the attractiveness ηιψ of the move, as computed by some heuristic indicating the a priori desir-
ability of that move;

2. the trail level τιψ of the move, indicating how proficient it has been in the past to make that
particular move: it represents therefore an a posteriori indication of the desirability of that move.

The specific formula for defining the probability distribution of moving from a state to another
one makes use of a set tabuk which indicates a problem-dependent set of infeasible moves for ant k.
According to the ANTS approach [8] probabilities are computed as follows: pkiψ is equal to 0 for all
moves which are infeasible (i.e., they are in the tabu list), otherwise it is computed by means of formula
(8), where α is a user-defined parameter (0 ≤ α ≤ 1).

pkιψ =
α · τιψ + (1− α) · ηιψ

Σ(ιν)/∈tabuk
(α · τιν + (1− α) · ηιν)

(8)

The essential characteristic distinguishing ANTS from other ACO algorithm is the structural use
of lower bounds during the search process. The lower bound used for the VFP was z(LV FP ). More
specifically, at every step we compute the cost of the partial solution so far constructed and we remove
from the mathematical representation of the problem all constraints of type (2) and (4) which are
saturated by the incumbent solution and all variables which cannot belong to any feasible solution due
to those already fixed. The lower bound is obtained as the sum of all dual variables associated with
the remaining constraints, whose values were computed in the optimal solution of the linear relaxation
of the whole problem (LVFP).

Based on the described elements, the ANTS metaheuristic that we implemented is the following.

Porto, Portugal, July 16-20, 2001



MIC’2001 - 4th Metaheuristics International Conference 5

ANTS algorithm

1. (Initialization)
Compute a (linear) lower bound LB to the problem to solve.
Initialize τιψ, ∀(ι, ψ) with the primal variable values.

2. (Construction)
For each ant k do

repeat
compute ηιψ, ∀(ι, ψ), as a lower bound to the cost of a complete
solution containing ψ.
choose the state to move to, with probability given by (8).
append the chosen move to the k-th ant’s set tabuk.

until ant k has completed its solution.
carry the solution to its local optimum.

end for.

3. (Trail update)
For each ant move (ιψ) do

compute ∆τιψ.
update the trail matrix.

end for.

4. (Terminating condition)
If not(end-test) go to step 2.

Fig.3. Pseudo code for the ANTS algorithm

The ANTS algorithm has been coded in Microsoft Visual C++ and run on a Pentium III, 733
MHz machine working under Windows 98. As a linear programming solver, in order to compute the
lower bounds we used CPLEX 6.6. The test set has been obtained from the TPC-D benchmark [11],
which is a standard in the data warehousing field. In order to evaluate the algorithm effectiveness, we
have defined a number of instances, all derived from the TPC-D by randomly selecting a progressively
greater subset of the 40 queries.

Table 1 shows the preliminary results obtained so far. The table columns show: (prob) the problem
name, where the number indicates how many queries were used to build the instance; (m) the number
of constraints; (n) the number of variables; (reduct) the number of constraints which can be removed
by a specific preprocessing routine; (lvfp) the lower bound z(LV FP ); (t lvfp) the cpu time to compute
z(LV FP ); (zub) the percentual deviation from z(LV FP ) of the upper bound; (t zub) the cpu time to
compute the ANTS upper bound.

Problems VFP3 and VFP5 are small-sized problems that we used to fine tune the algorithm elements.
For all other problem dimensions we present three instances, which were obtained by randomly selecting
the specified number of queries out of the possible 40. Notice the high variability of difficulty deriving
from different query sets.

On the small instances, ANTS was able to identify the optimal solution, as testified by the fact that
the lower bound has a cost equal to that of the best solution found by ANTS. On bigger instances,
the distance between z(LVFP) and the best solution cost found by ANTS increases with the problem
size: on those instances more CPU time than the 30 minutes allowed in this test is needed to get good
quality results.

Porto, Portugal, July 16-20, 2001



MIC’2001 - 4th Metaheuristics International Conference 6

prob m n reduct lvfp t lvfp zub t zub
VFP3 94 76 20 50475.0 0.05 0.00 7.34
VFP5 729 704 34 281816.2 0.22 2.18 1138.22
VFP10A 4780 5338 245 65190.0 0.66 0.00 568.37
VFP10B 360 358 5 33976.0 0.06 0.00 1367.23
VFP10C 592 512 97 116463.0 0.11 0.00 4.23
VFP15A 4962 5528 242 67971.0 0.82 0.12 1046.24
VFP15B 2365 2544 108 132775.7 0.39 0.72 384.38
VFP15C 6410 7118 317 286063.2 4.67 2.03 183.59
VFP20A 9466 10397 405 128094.4 10.77 3.28 428.39
VFP20B 7745 8285 326 165426.2 2.41 5.92 1634.53
VFP20C 36854 40108 1358 186915.7 100.46 10.77 823.48
VFP25A 25855 28121 874 173367.4 10.99 6.57 1772.16
VFP25B 8182 8766 314 169133.6 2.47 19.27 1003.80
VFP25C 57964 62733 1965 145471.3 254.90 33.98 204.55
VFP30A 44758 48133 1339 237247.4 118.36 22.00 1538.23
VFP30B 62973 67484 1735 208801.4 343.29 35.76 704.86
VFP30C 75489 81026 2206 178171.3 625.93 43.88 839.11

Table 1: ANTS results on the set of VFP test problems

References

[1] A. Colorni, M. Dorigo, and V. Maniezzo. Distributed optimization by ant colonies. In Proceedings
of ECAL’91, European Conference on Artificial Life. Elsevier Publishing, 1991.

[2] A. Datta, B. Moon, and H. Thomas. A case for parallelism in data warehousing and OLAP. In
Proc. IEEE First Int. Workshop on Data Warehouse Design and OLAP Technology, 1998.

[3] M. Dorigo. Optimization, Learning and Natural Algorithms. Ph.D. Thesis. Polit. di Milano, 1992.

[4] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: optimization by a colony of cooperating
agents. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 26(1):29–41, 1996.

[5] M. Golfarelli, D. Maio, and Rizzi S. Applying vertical fragmentation techniques in logical design
of multidimensional databases. In Proc. 2nd Int. Conf. on Data Warehousing and Knowledge
Discovery, pages 11–23, 2000.

[6] V. Harinarayan, A. Rajaraman, and J. Ullman. Implementing Data Cubes Efficiently. In Proc.
ACM Sigmod Conf., Montreal, Canada, 1996.

[7] R. Kimball. The data warehouse toolkit. John Wiley & Sons, 1996.

[8] V. Maniezzo. Exact and approximate nondeterministic tree-search procedures for the quadratic
assignment problem. INFORMS Journal on Computing, 11(4):358 – 369, 1999.

[9] V. Maniezzo, A. Carbonaro, M. Golfarelli, and Rizzi S. An ants algorithm for optimizing the
materialization of fragmented views in data warehouses: preliminary results. In Proc. 1st European
Workshop on Evolutionary Computation in Combinatorial Optimization, 2001.

[10] D. Munneke, K. Wahlstrom, and M. Mohania. Fragmentation of multidimensional databases. In
Proc. 10th Australasian Database Conf., pages 153–164, Auckland, 1999.

[11] F. Raab, editor. TPC Benchmark(tm) D (Decision Support), Proposed Revision 1.0. Transaction
Processing Performance Council, San Jose, 1995.

Porto, Portugal, July 16-20, 2001


