
Copyright 1998 IEEE. Published in the Proceedings of the Hawaii International Conference On System Sciences, January
6-9, 1998, Kona, Hawaii.

Conceptual Design of Data Warehouses from E/R Schemes

Matteo Golfarelli Dario Maio Stefano Rizzi
DEIS - Univ. of Bologna DEIS, CSITE - Univ. of Bologna DEIS - Univ. of Bologna
mgolfarelli@deis.unibo.it dmaio@deis.unibo.it srizzi@deis.unibo.it

Abstract
Data warehousing systems enable enterprise managers to
acquire and integrate information from heterogeneous
sources and to query very large databases efficiently.
Building a data warehouse requires adopting design and
implementation techniques completely different from those
underlying information systems. In this paper we present a
graphical conceptual model for data warehouses, called
Dimensional Fact model, and propose a semi-automated
methodology to build it from the pre-existing
Entity/Relationship schemes describing a database. Our
conceptual model consists of tree-structured fact schemes
whose basic elements are facts, attributes, dimensions and
hierarchies; other features which may be represented on
fact schemes are the additivity of fact attributes along
dimensions, the optionality of dimension attributes and
the existence of non-dimension attributes. Compatible fact
schemes may be overlapped in order to relate and compare
data. Fact schemes may be integrated with information of
the conjectured workload, expressed in terms of query
patterns, to be used as the input of a design phase whose
output are the logical and physical schemes of the data
warehouse.

1. Introduction

The database community is devoting increasing
attention to the research themes concerning data
warehouses; in fact, the development of decision-support
systems will probably be one of the leading issues for the
next years. The enterprises, after having invested a lot of
time and resources to build huge and complex information
systems, ask for support in obtaining quickly summary
information which may help managers in planning and
decision making. Data warehousing systems address this
issue by enabling managers to acquire and integrate
information from different sources and to query efficiently
very large databases.

The topic of data warehousing encompasses application
tools, architectures, information service and
communication infrastructures to synthesize information
useful for decision making from distributed heterogeneous
operational data sources. These information are brought
together into a single repository, called a data warehouse
(DW), suitable for direct querying and analysis and as a
source for building logical data marts oriented to specific

areas of the enterprise [15].
While it is universally recognized that a DW leans on a

multidimensional model, little is said about how to carry
out its conceptual design starting from the user
requirements. On the other hand, we argue that an accurate
conceptual design is the necessary foundation for building
an information system which is both well-documented and
fully responding to requirements. The Entity/Relationship
(E/R) model is widespread in the enterprises as a
conceptual formalism to provide standard documentation
for relational information systems, and many efforts have
been done to use E/R schemes as the input for designing
non-relational databases as well [5]; unfortunately, as
argued in [10]:

"Entity relation data models [...] cannot be understood by
users and they cannot be navigated usefully by DBMS
software. Entity relation models cannot be used as the
basis for enterprise data warehouses."

In this paper we present a graphical conceptual model
for DWs, called Dimensional Fact (DF) model, and
propose a semi-automated methodology to build it from
the pre-existing E/R schemes describing an operational
information system. The DF model is a collection of tree-
structured fact schemes whose basic elements are facts,
attributes, dimensions and hierarchies; other features which
may be represented on fact schemes are the additivity of
fact attributes along dimensions, the optionality of
dimension attributes and the existence of non-dimension
attributes. Compatible fact schemes may be overlapped in
order to relate and compare data. Fact schemes may be
integrated with information of the conjectured workload,
expressed in terms of query patterns, to be used as the
input of a design phase whose output are the logical and
physical schemes of the DW.

In some cases, the E/R documentation is not available.
The methodology we propose can be applied starting from
the relational database scheme as well, provided that the
multiplicities (-to-one or -to-many) of the logical
associations established by foreign key constraints are
known.

After surveying the literature on DWs in Section 2, in
Section 3 we describe the DF model. Section 4 outlines a
methodology for deriving fact schemes from E/R
documentation, and Section 5 proposes an example in the

health-care domain.

2. Background and literature on data
warehousing

From a functional point of view, the data warehouse
process consists in three phases: extracting data from
distributed operational sources; organizing and integrating
data consistently into the DW; accessing the integrated
data in an efficient and flexible fashion. The first phase
encompasses typical issues concerning distributed
heterogeneous information services, such as inconsistent
data, incompatible data structures, data granularity, etc.
(for instance, see [16]). The third phase requires
capabilities of aggregate navigation [7], optimization of
complex queries [3], advanced indexing techniques [11] and
friendly visual interface to be used for On-Line Analytical
Processing (OLAP) [4] and data mining [6].

As to the second phase, designing the DW requires
techniques completely different from those adopted for
operational information systems. Most scientific literature
on the design of DWs concerns their logical and physical
models; the apparent lack of interest in the issues related
to conceptual design can be explained as follows: (a) data
warehousing was initially devised within the industrial
world, as a result of practical demands of users who
typically do not give predominant importance to
conceptual issues; (b) logical and physical design have a
primary role in optimizing the system performances,
which is the main goal in data warehousing applications.

Data within a DW are organized according to the
multidimensional model. In [12], the author proposes an
approach to the design of DWs based on a business model
of the enterprise which is actually a relational database
scheme. Regretfully, conceptual and logical design are
mixed up; since logical design is necessarily targeted
towards a logical model (relational in this case), no
unifying conceptual model of data is devised.

The multidimensional model may be mapped on the
logical level differently depending on the underlying
DBMS. If a DBMS supporting directly the
multidimensional model is used, fact attributes are
typically represented as the cells of multidimensional
arrays whose indices are determined by key attributes [8].
On the other hand, in relational DBMSs the
multidimensional model of the DW is mapped in most
cases through star schemes [10] consisting of a set of
dimension tables and a central fact table. Dimension tables
are strongly denormalized and are used to select the facts of
interest based on the user queries. The fact table stores fact
attributes; its key is defined by importing the keys of the
dimension tables.

Different versions of these base schemes have been
proposed in order to improve the overall performances [1],
handle the sparsity of data [13] and optimize the access to
aggregated data [9]. In particular, the efficiency issues
raised by data warehousing have been addressed by means

of new indexing techniques (see [14] for a survey), among
which we mention bitmap indices [13]. A bitmap index
for attribute a is a matrix of bits with one column for each
possible value a can assume and one row for each non-
empty cell of a data-cube (or for each row of a fact table).

3. A conceptual model for data
warehouses

In our approach, the conceptual model of a DW
consists of a set of fact schemes. The basic components of
fact schemes are facts, dimensions and hierarchies. A fact
is a focus of interest for the enterprise; a dimension
determines the granularity adopted for representing facts; a
hierarchy determines how fact instances may be aggregated
and selected significantly for the decision-making process.

A fact scheme is structured as a tree whose root is a
fact. The fact is represented by a box which reports the fact
name and, typically, one or more numeric and
continuously valued attributes which "measure" the fact
from different points of view. Figure 1 reports a small fact
scheme for fact SALE in a store chain; quantity sold and
returns are fact attributes.

SALE

product

qty sold
returns

category
typemanufacturer

weekmonth

store

city state

sales manager

address

size

fact

dimension

hierarchy

non-dimension
attribute

fact attribute

Figure 1. A simple three-dimensional fact
scheme for a chain of stores.

Each vertex directly attached to the fact is a dimension.
Subtrees rooted in dimensions are hierarchies. Their
vertices, represented by circles, are attributes which may
assume a discrete set of values; their arcs represent -to-one
relationships between pairs of attributes. The dimension in
which a hierarchy is rooted defines its finest aggregation
granularity; the attributes in the vertices along each sub-
path of the hierarchy starting from the dimension define
progressively coarser granularities. The fact scheme in
Figure 1 has three dimensions: week, product and store.

Some terminal vertices in the fact scheme may be
represented by lines instead of circles (size and address in
Figure 1); these vertices correspond to non-dimension
attributes. A non-dimension attribute contains additional
information about an attribute of the hierarchy, and is
connected to it by a -to-one relationship; differently from
the attributes of the hierarchy, it cannot be used for

aggregation. For instance, aggregating sales according to
the address of the store would not make sense; thus,
address is represented as a non-dimension attribute.

Some arcs within the hierarchies may be marked by a
dash: these arcs express optional relationships between
pairs of attributes (see Section 5 for an example).
Indicating explicitly optionality is useful for logical
design: in fact, for each optional attribute, an extra record
reporting a dummy value will be added to the
corresponding dimension table.

A fact expresses a many-to-many relationship among
the dimensions. Each combination of values of the
dimensions defines a fact instance, characterized by exactly
one value for each fact attribute; fact instances are the
elemental information represented within the DW. In our
example, a fact instance describes the quantity of one
product sold during one week in one store, and the
corresponding total returns.

A fact scheme may also have no fact attributes: in this
case, each fact instance records the occurrence of an event.
For example, consider a fact ATTENDANCE with
dimensions date, student, course and teacher: a fact
instance represents the fact that, on a given date, a student
attends a course given by a teacher. Fact schemes with no
fact attributes correspond, on the logical level, to factless
fact tables, typically used for event tracking or as coverage
tables [10].

3.1. Additivity

In general, querying an information system means
linking different concepts through user-defined paths in
order to retrieve some data of interest; in particular, for
relational databases this is done by formulating a set of
joins to connect relation schemes.

On the other hand, querying a DW is typically aimed at
extracting summary data to fill a structured report to be
analysed for decisional or statistical purposes. Since
analysing data at the maximum level of detail is often
overwhelming, it may be useful to aggregate fact instances
into clusters at different levels of abstraction (roll-up in
OLAP terminology). Aggregation requires to define a
proper operator for composing the attribute values
characterizing each fact instance into attribute values
characterizing each cluster as a whole.

As a guideline, most fact attributes should be additive
[10]. This means that the sum operator can be used to
aggregate attribute values along all hierarchies. An
example of additive attribute in the sale example is the
number of sales: the number of sales for a given sales
manager is the sum of the number of sales for all the
stores managed by that sales manager.

A fact attribute is called semi-additive if it is not
additive along one or more dimensions, non-additive if it
is additive along no dimension. Examples of semi-additive
attributes are all those measuring a level, such as an
inventory level, a temperature, etc. An inventory level is

non-additive along time, but it is additive along both the
product and the store dimensions. A temperature attribute
is non-additive, since adding up two temperatures hardly
makes sense. However, this kind of semi- or non-additive
attributes can still be aggregated by using operators such
as average, maximum, minimum.

For other attributes, aggregation is inherently
impossible for conceptual reasons. Consider an attribute
number of customers in the sale example, and suppose it
is estimated for a given product, day and store by counting
the number of purchase tickets for that product printed on
that day in that store. Since the same ticket may include
other products, adding the number of customers for two or
more products would lead to an inconsistent result. Thus,
number of customers is non-additive along the product
dimension (while it is additive along the time and the
stores dimensions). In this case, the reason for non-
additivity is that the relationship between purchase tickets
and products is many-to-many instead of many-to-one.
Aggregation cannot be consistently performed on the
product dimension, whatever operator is used, unless the
grain of fact instances is made finer.

In the DF model, attributes are additive along all the
dimensions by default. Semi-additivity is represented
explicitly by relating each semi- or non-additive attribute
with the dimension(s) along which values cannot be added.
If an aggregation operator (other than sum) can be used, it
is indicated explicitly. Figure 2 shows an example.

size

SALE

product

qty sold
returns
n. of customers
inventory level

category
typemanufacturer

weekmonth

store

city state

sales manager

AVG address

Figure 2. Semi-additivity on the fact
scheme.

3.2. Overlapping compatible fact schemes

In our approach, different facts are represented in
different fact schemes. However, part of the queries the
user formulates on the DW may require comparing fact
attributes taken from distinct, though related, schemes
(drill across in OLAP terminology).

Two fact schemes are said to be compatible if they
share at least one dimension attribute. Two compatible
schemes F and G may be overlapped to create a resulting
scheme H . In the simplest case, in which the inter-

attribute dependencies in the two schemes are not
conflicting:

• the set of the fact attributes in H is the union of the
sets in F and G;

• the dimensions in H are the intersection of those in
F and G , assuming that a given dimension is
common to F and G if at least one dimension
attribute is shared.

• each hierarchy in H includes all and only the
dimension attributes included in the corresponding
hierarchies of both F and G.

job

month

year city stateAVG

storeEMPLOYEES

number of emp.
max. salary

MAX

MAXMAX
(a)

sex

job

quarter

year city stateAVG

NON-EUROPEAN
EMPLOYEES

number of emp.

age
range

continent

nation

(b)

job

year

city stateAVG

AVG

ALL EMPLOYEES

number of emp.
max salary of emp.
numb. of non-eur. emp.MAX

MAX

MAX

(c)

Figure 3. Scheme overlapping.

Consider the two fact schemes in Figures 3.a and 3.b:
the first represents all employees of an enterprise, the
second only the non-European employees. Although these
schemes are aimed at extracting different information, they
are compatible; in fact they share the time, job and store
dimensions. The scheme resulting from overlapping is
shown in Figure 3.c; it can be used, for instance, to

calculate the percentage of non-European employees for
each city, job and year.

In some cases, aggregation along a dimension can be
carried out at different abstraction levels even if the
corresponding dimension attributes were not explicitly
shown. For instance, given a month attribute within a
time hierarchy, fact instances can be aggregated by quarter,
semester and year by performing a simple calculation.
Thus, given the two compatible fact schemes in Figure 3,
attribute quarter could in principle be added to the time
dimension in the resulting scheme. On the other hand, the
designer must keep in mind that, by adopting this
solution, the time for extracting data by quarter will
increase significantly; thus, the best solution would
probably be to add explicitly the quarter attribute to the
time hierarchy in the employee fact scheme.

3.3. Representing query patterns on a fact
scheme

The basic OLAP operators for formulating typical
queries on DWs are roll-up, drill down, drill across and
slice-and-dice; they are used, respectively, to aggregate fact
attributes in order to view data at a higher level of
abstraction, disaggregate fact attributes in order to
introduce further detail, relate and compare distinct facts,
select and project facts so as to reduce their dimensionality
[2].

On a fact scheme, a query may be represented by a
query pattern, which consists in a set of markers placed on
the dimension attributes. One or more markers can be
placed within each hierarchy, to indicate at what level(s)
fact instances must be aggregated. A dimension may also
contain no markers, to indicate that none of its attributes
is involved in the query. Non-dimension attributes need
not be shown on the query pattern.

The data shown as a result of a query may be any
combination of fact attributes, and/or the result of any
computation made on them. Figure 4 shows the query
pattern representing the following query: "total quantity
sold and average returns per unit sold for each week and for
each type of product". The average returns per unit sold is
the ratio between the total returns and the quantity sold.

SALE

product

qty sold
returns/qty sold

category
typemanufacturer

weekmonth store city state

sales manager

Figure 4. Query pattern.

TYPE

PRODUCT

CATEGORY

STORE CITY

SALES
MANAGER

(1,1)
(0,n)

(1,1) (1,n)

(1,1) (0,n)
(1,1)

(1,n)

(1,1) (1,n)

(0,n)

date state

qty

unit
price

PURCHASE
TICKET

(1,n)

type category

product

sales
manager

ticket number store city

of

sale

of

in

of

in

manufacturer

size

address

Figure 5. The (simplified) E/R scheme for the sale fact scheme.

A query pattern is well-formed if the fact attributes
reported are compatible with the disposition of markers
along the hierarchies. In particular, if an attribute which
cannot be aggregated along a hierarchy is present, a marker
must necessarily be placed on the corresponding
dimension.

4. From E/R schemes to fact schemes

Most information systems implemented in enterprises
during the last decade are relational, and in most cases their
analysis documentation consists of E/R schemes. Thus, it
seems natural to derive the conceptual model of a DW
from the existing E/R schemes. The methodology we
outline in this section to build a DF model consists of 5
steps:

1. Defining facts.
2. For each fact:

a. Building the attribute tree.
b. Pruning and grafting the attribute tree.
c. Defining dimensions.
d. Defining fact attributes.
e. Defining hierarchies.

In the following subsections we will describe these
steps referring to the sale example, for which a simplified
E/R scheme is shown in Figure 5. Each instance of
relationship SALE represents an item referring to a single
product within a purchase ticket. Attribute unitPrice is
placed on SALE instead of PRODUCT since the price of
products may vary over time.

4.1. Defining facts

Facts are concepts of primary interest for the decision
making process. Typically, they correspond to events
occurring dynamically in the enterprise world.

A fact may be represented on the E/R scheme either by

an entity F or by an n-ary relationship between entities
E1,...En. In the latter case, for the sake of simplicity, it is
worth to transform the relationship into an entity F by
replacing each branch Ei with a binary relationship
between F and Ei ; each binary relationship has
multiplicity (1,1) on the side of F and (mi,Mi) on the side
of Ei , where mi∈ {0,1} and Mi∈ {1,n} are, respectively,
the minimum and the maximum multiplicity of branch
Ei . The attributes of the relationship become attributes of
F; the identifier of F is the combination of the identifiers
of Ei , i=1,...n.

Entities or relationships representing frequently updated
archives (such as SALE) are good candidates for defining
facts; those representing structural properties of the
domain, corresponding to nearly-static archives (such as
STORE and CITY), are not.

Each fact identified on the E/R scheme becomes the
root of a different fact scheme. In the following
subsections, we will focus the discussion on a single fact,
the one corresponding to entity F. In the sale example, the
fact of primary interest for business analysis is the sale of
a product, represented in the E/R scheme by relationship
s a l e . Figure 6 shows how relationship s a l e is
transformed into an entity.

4.2. Building the attribute tree

Given a portion of interest of an E/R scheme and an
entity F belonging to it, we call attribute tree the tree such
that:

• each vertex corresponds to an attribute of the scheme;
• the root corresponds to the identifier of F;
• for each vertex v , the corresponding attribute

functionally determines all the attributes
corresponding to the descendants of v.

The attribute tree will be used in the following
subsections to build the fact scheme for the fact
corresponding to F.

PRODUCT
(1,1)(0,n)

qty

product

in

manufacturer

date
unit
price

PURCHASE
TICKET

(1,n)

ticket number

in
(1,1)

SALE

size

Figure 6. Transformation of relationship sale into an entity.

Let F be the entity chosen to represent a fact; the
attribute tree may be constructed automatically by
applying the following recursive procedure:

translate(F,identifier(F))

where

translate(E,v):
// E is the current entity, v is the current
vertex

{ for each attribute a ∈ E | a ≠identifier(F)
do

addChild(v,a); // adds child a to
vertex v

for each entity G connected to E by a x-
to-one relationship R do

{ for each attribute b ∈ R do
addChild(v,b);

addChild(v,identifier(G));
translate(G,identifier(G));

}
}

If F is identified by the combination of two or more
attributes, identifier(F) denotes their concatenation.

It is worth adding some further notes:

• It is useful to emphasize on the fact scheme the
existence of optional relationships between attributes
in a hierarchy. To this end, the arcs corresponding to
optional relationships or optional attributes of the
E/R scheme should be marked by a dash (see Section
5 for an example).

• A one-to-one relationship can be thought of as a
particular kind of many-to-one relationship, hence, it
can be inserted into the attribute tree. Nevertheless,
in a DW query, drilling down along a one-to-one
relationship means adding a row header to the result
without introducing further detail; thus, it is often
worth grafting from the attribute tree the attributes
following one-to-one relationships (see Section 4.3),
or representing them as non-dimension attributes.

• Generalization hierarchies in the E/R scheme are
equivalent to one-to-one relationships between the
super-entity and each sub-entity, and should be
treated as such by the algorithm.

• x-to-many relationships cannot be inserted into the
attribute tree. In fact, representing these relationships

at the logical level, for instance by a star scheme,
would be impossible without violating the first
normal form.

• As already stated in Section 4.1, an n - a r y
relationship is equivalent to n binary relationships.
Most n -ary relationships have maximum
multiplicity greater than 1 on all their branches; in
this case, they determine n one-to-many binary
relationships which cannot be inserted into the
attribute tree. On the other hand, a branch with
maximum multiplicity equal to 1 determines a one-
to-one binary relationship which can be inserted.

The attribute tree corresponding to the E/R scheme in
Figure 5 is shown in Figure 7.

unit price

qty

ticket
number

date

store

sales
manager

city stateproduct

manufacturer

type

category

product+
tic

ket n
umber

addresssize

Figure 7. Attribute tree for the sale
example (the root is in grey).

4.3. Pruning and grafting the attribute tree

Probably, not all of the attributes represented in the
attribute tree are interesting for the DW. Thus, the
attribute tree may be pruned and grafted in order to
eliminate the unnecessary levels of detail.

Pruning is carried out by dropping any subtree from the
tree. The attributes dropped will not be included in the fact
scheme, hence, it will be impossible to use them to
aggregate data. For instance, on the sale example, the
subtree including city and state may be dropped.

Grafting is used when, though a vertex of the tree
expresses an uninteresting information, its descendants
must be preserved. For instance, one may want to classify
products directly by category, without considering the
information on their type. Let v be the vertex to be

eliminated, and v' its father:

graft(v):
{ for each v" | v" is child of v do

addChild(v',v");
drop v;

}

Thus, grafting is carried out by moving the entire subtree
with root in v to v'. As a result, attribute v will not be
included in the fact scheme and the corresponding
aggregation level will be lost; on the other hand, all the
descendant levels will be maintained. In the sale example,
the detail of purchase tickets is uninteresting; by grafting
vertex ticket number, the attribute tree is transformed as
shown in Figure 8. In general, grafting a child of the root
corresponds to making the granularity of fact instances
coarser and, if the node grafted has two or more children,
leads to increasing the number of dimensions in the fact
scheme.

size address

unit price

qty

date

store

sales
manager

city stateproduct

manufacturer

type

category

product+
tic

ket n
umber

Figure 8. Attribute tree for the sale
example after grafting vertex ticket

number.

It should be noted that, when an optional vertex is
grafted, all its children inherit the optionality dash.

4.4. Defining dimensions

Dimensions determine how fact instances may be
aggregated significantly for the decision-making process.
The dimensions must be chosen in the attribute tree
among the children vertices of the root (including the
attributes which have become children of the root after the
tree has been grafted); they may correspond either to
discrete attributes, or to ranges of discrete or continuous
attributes. Their choice is crucial for the DW design since
it determines the granularity of fact instances.

It is widely recognized that time is a key dimension for
DWs. E/R schemes can be classified, according to the way
they deal with time, into snapshot and temporal. A
snapshot scheme describes the current state of the
application domain; old versions of data varying over time
are continuously replaced by new versions. On the other
hand, a temporal scheme describes the evolution of the
application domain over a range of time; old versions of
data are explicitly represented and stored. When designing a

DW from a temporal scheme, time is explicitly
represented as an E/R attribute and thus it is an obvious
candidate to define a dimension. Should time appear in the
attribute tree as a child of some vertex different from the
root, it is worth considering the possibility of grafting the
tree in order to have time become a dimension (i.e.,
become a child of the root). In snapshot schemes, time is
not explicitly represented (it is implicitly assumed that the
scheme represents data at the current time); however, also
for snapshot schemes time should be added as a dimension
to the fact scheme.

In the sale example, the attributes chosen as
dimensions are product, store and ranges of the date
attribute corresponding to weeks.

At this stage, the fact scheme may be sketched by
adding the chosen dimensions to the root fact.

4.5. Defining fact attributes

Fact attributes are typically either counts of the number
of instances of F, or the sum/average/maximum/minimum
of expressions involving numerical attributes of the
attribute tree (the attributes chosen as dimensions for the
fact scheme are excluded). A fact may have no attributes, if
the only information to be recorded is the occurrence of the
fact.

The fact attributes determined, if any, are reported on
the fact scheme. At this step, it is useful for the phase of
logical design to build a glossary which associates each
fact attribute to an expression describing how it can be
calculated from the attributes of the E/R scheme. Referring
to the sale example, the glossary may be compiled as
follows:

quantity sold = SUM(SALE.qty)
total returns = SUM(SALE.qty * SALE.unitPrice)
number of customers = COUNT(SALE)

If attribute unitPrice had been placed on entity PRODUCT
in the E/R scheme:

total returns = SUM(SALE.qty * PRODUCT.unitPrice)

The aggregation operators are meant to work on all the
instances of SALE which relate to the same week, store and
product.

In some cases, aggregation is not necessary to define
fact attributes, since it has already been executed at the
relational level. For instance, each instance of entity SALE
in the E/R scheme might describe the total sales for a
given product, store and week; in this case, instances of
the entity correspond one-to-one to fact instances, and
entity attributes may be directly translated into fact
attributes.

4.6. Defining hierarchies

The last step in building the fact scheme is the
definition of hierarchies on dimensions. Along each
hierarchy, attributes must be arranged into a tree such that
a x-to-one relationship holds between each node and its
descendants.

The attribute tree already shows a plausible
organization for hierarchies; at this stage, it is still
possible to prune and graft the tree in order to eliminate
irrelevant details (for instance, in most cases, a vertex
connected to its father by a one-to-one relationship is
grafted). It is also possible to add new levels of
aggregation by defining ranges for numerical attributes;
typically, this is done on the time dimension. In the sale
example, the time dimension is enriched by introducing
attribute month, defined as a range of week.

During this phase, the attributes which should not be
used for aggregation but only for informative purposes
may be identified as non-dimension attributes.

5. The Hospital Example

In this section we apply our methodology for
conceptual design of DWs to a real-world example. The
E/R scheme shown in Figure 9 is part of the
documentation for a typical health-care information
system; in particular, it describes the admissions and their
outcomes.

The attribute tree for fact ADMISSION, represented by

entity ADMISSION, is shown in Figure 10.a. It should be
noted that a surgery subtree has been created though the
causes relationship is many-to-many. This can be done
since the Boolean attribute if main on the relationship
identifies one of the operations executed during the
hospitalization as the principal one; thus, if only the main
operations are considered, the causes relationship
becomes many-to-one.

Transforming this attribute tree in the one shown in
Figure 10.b requires four steps:

• grafting date+time+op.th. (one-to-one relationship);
• pruning date of surgery, time of surgery and surgeon;
• pruning the subtree rooted in op.th.;
• pruning name and physician;
• grafting patCode.

The fact scheme we have derived is shown in Figure
11. Dimension month is defined as a range on attribute
date; dimension age5 as a range of attribute age (5 years
intervals). The hierarchies on dimensions month and age5
are defined by adopting progressively wider ranges.
Dimension type of surgery is optional. The glossary for
the fact attributes is reported below:

number of admissions = COUNT(ADMISSION)
value = SUM(has.value)
number of days = SUM(ADMISSION.nDays)
score = SUM(DRG.weight)

All fact attributes are additive along all dimensions.

PATIENT

DIAGNOSIS

D.R.G.

WARD

(1,1)

(0,n) (1,1) (0,n)

(1,n)

date

ADMISSION
(1,1)

sex

drg

diagnosis ward

for

undergoes

in

(1,1)

(0,n)

has

SURGERY

(0,n)

(1,1)

time

causes

age

namepatCode

TOWN

(1,n)

(1,1)

town

lives
in

weight

threshold

ratetype

value

in

DIVISION

division

(1,1)

(1,n)

has

(1,1)

(1,n)

has

HOSPITALhospital

n. days

outcome

PHYSICIAN

physician

(0,n) (1,1)
makes

(1,1)
in

cure

(0,n)
requires

code

(0,n)

(1,1)

OPERATING-
THEATRE

op.th.

(1,1)

(0,n)

has

(1,1) (0,n)

type if date
main

Figure 9. The hospital E/R scheme.

op.th.
date of surgery

drg

diagnosis
date

ward divisionhospital

name

sex

age

town

ward

division

hospital

type of drg
rate weight

threshold

value
n. days

outcome

patCode

code

physician

requiring physician

date+time+op.th.

time of surgery
type of surgery

surgeon

diagnosis
outcome

requiring physician

type
rate weight

threshold

drg

date

sex

age

town

ward

division

hospital

value

n. daysco
de

type of surgery

(a) (b)

Figure 10. Attribute tree for the hospital E/R scheme.

drg

diagnosis

sex
age5

town

ward

division

hospital

type

outcome

type of surgery

ADMISSION

n. of admissions
value
n. of days
score

month

quarter

semester

year

age10

threshold
rate

requiring physician

Figure 11. Fact scheme for hospitalizations.

6. Conclusion

In this paper we have proposed a conceptual model for
data warehouse design and a semi-automated methodology
for deriving it from the E/R documentation describing the
information system of the enterprise.

The DF model is independent of the target logical
model (multidimensional or relational); in order to bridge
the gap between the fact schemes and the DW logical
scheme, a methodology for logical design is needed. Like
in operational information systems, DW logical design
should be based on an estimate of the expected workload
and data volumes. The workload will be expressed in terms
of query patterns and their frequencies; data volumes will

be computed by considering the sparsity of facts and the
cardinality of the dimension attributes. Among the design
topics specific of DWs, we mention the possibility of
combining separate dimensions into one by defining
composite keys, the recognition of degenerate dimensions
for which no corresponding dimension table is needed, the
choice of the aggregated fact tables to be introduced in a
constellation scheme, the partitioning of the DW into
integrated data marts, etc. Our future work will be devoted
to developing the methodology for logical design and
implementing it within an automated tool.

References

[1] R. Barquin, and S. Edelstein. Planning and Designing
the Data Warehouse. Prentice Hall, 1996.

[2] S. Chaudhuri, and U. Dayal. An overview of data
warehousing and OLAP technology. SIGMOD Record, vol.
26, n. 1, pp. 65-74, 1997.
[3] S. Chaudhuri, and K. Shim. Including group-by in query
optimization. In Proc. 20th Int. Conf. on Very Large Data
Bases, pp. 354-366, 1994.
[4] G. Colliat. OLAP, relational and multidimensional
database systems. SIGMOD Record, vol. 25, n. 3, pp. 64-69,
1996.
[5] C. Fahrner, and G. Vossen. A survey of database
transformations based on the Entity-Relationship model.
Data & Knowledge Engineering, vol. 15, n. 3, pp. 213-250.
1995.
[6] U.M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. Data
mining and knowledge discovery in databases: an overview.
Comm. of the ACM, vol. 39, n.11, 1996.
[7] A. Gupta, V. Harinarayan, and D. Quass. Aggregate-
query processing in data-warehousing environments. In Proc.
21th Int. Conf. on Very Large Data Bases, Zurich,
Switzerland, 1995.
[8] V. Harinarayan, A. Rajaraman, and J. Ulman.
Implementing Data Cubes Efficiently. In Proc. of ACM
Sigmod Conf., Montreal, Canada, 1996.

[9] T. Johnson, and D. Shasha. Hierarchically split cube
forests for decision support: description and tuned design.
Bullettin of Technical Committee on Data Engineering.vol.
20, n. 1, 1997.
[10] R. Kimball. The data warehouse toolkit. John Wiley &
Sons, 1996.
[11] D. Lomet, and B. Salzberg. The Hb-Tree: a
multidimensional indexing method with good guaranteed
performance. ACM Trans. On Database Systems, vol. 15, n.
44, pp.625-658, 1990.
[12] F. McGuff. Data modeling for data warehouses. October
1996.
http://members.aol.com/fmcguff/dwmodel/dwmodel.htm.
[13] P. O'Neil, and G. Graefe. Multi-table joins through
bitmapped join indices. SIGMOD Record, vol. 24, n. 3, pp. 8-
11, 1995.
[14] S. Sarawagi. Indexing OLAP data. Bullettin of Technical
Committee on Data Engineering.vol. 20, n. 1, 1997.
[15] J. Widom. Research Problems in Data Warehousing. In
Proc. 4th Int. Conf. on Information and Knowledge
Management, Nov. 1995.
[16] Y. Zhuge, H. Garcia-Molina, and J. L. Wiener. The
Strobe Algorithms for Multi-Source Warehouse Consistency.
In Proc. Conference on Parallel and Distributed Information
Systems, Miami Beach, FL, 1996.

