An ANTS Algorithm for Optimizing the Materialization of Fragmented Views in Data Warehouses: Preliminary Results

Vittorio Maniezso¹, Antonella Carbonaro¹, Matteo Golfarelli², and Stefano Rizzi²

¹ Department of Computer Science, University of Bologna, Italy
{maniezso, carbonaro}@csr.unibo.it
² DEIS, University of Bologna, Italy
{mgolfarelli, srizzi}@deis.unibo.it

Abstract. The materialization of fragmented views in data warehouses has the objective of improving the system response time for a given workload. It represents a combinatorial optimization problem arising in the logical design of data warehouses which has so far received little attention from the optimization community. This paper describes the application of a metaheuristic approach, namely the ANTS approach, to this problem. In particular, we propose an integer programming formulation of the problem, derive an efficient lower bound and embed it in an ANTS algorithm. Preliminary computational results, obtained on the well-known TPC-D benchmark, are presented.

1 Introduction

Data warehouses are enjoying increasing market success being foremost systems for companies willing to improve the support given to decision processes and data analysis procedures. A data warehouse enables the executives to retrieve summary data, derived by “cleaning” and integrating those present in operational information systems; primary issues are flexible query interface and fast query response.

The design of a data warehouse starts with the identification of relevant data in the company information system; these data must be integrated, reorganized in a multidimensional fashion and possibly aggregated in order to be of effective use. After that, conceptual, logical and physical design phases are encompassed. The problem addressed in this paper belongs to logical design and has the objective of minimizing the query response time by reducing the number of disk pages to be accessed. This may be obtained by defining appropriate tables of aggregated data (views) and by including in them only the data which are actually requested by some query.

Storing aggregated data obviously leads to redundancy, thus generating a trade-off between effectiveness and amount of memory to be allocated. The algorithm presented in this paper directly addresses the optimization of this trade-off, when working on real-world large-scale data repositories. To the best of our
knowledge, no algorithmic solution has been presented so far in the literature for the problem of interest, which goes under different names, such as the problem of materializing fragmented views, vertical fragmentation problem or vertical partitioning problem. The problem has been described in [9], where no optimization algorithm is proposed. In [3], a related problem is described, aimed at building data indices to enhance performance in parallel implementations of data warehouses. In [4] the problem is formalized and a branch-and-bound approach is devised.

This paper is structured as follows. In Section 2 we introduce the necessary background on data warehouses with reference to logical design. In Section 3 we define the vertical fragmentation problem (VFP) and propose a mathematical formalization of VFP and a possible linear relaxation of the formulation leading to an effective polynomial-time lower bound. Section 4 reviews the ANTS approach and describes the adaptation of ANTS to the VFP, while Section 5 presents preliminary computational results obtained on the TPC-D benchmark. Finally, Section 6 concludes the paper.

2 Background

The description of a data warehouse must start from the adoption of a suitable data modeling technique language. The most widely accepted one is the multidimensional modeling technique [7], which denotes data by means of an n-dimensional (hyper)cube, where each dimension corresponds to a characteristic of the data. Each element of the cube is usually characterized by quantitative attributes, called measures, which are computed from the operational information system. Furthermore, each dimension is related to a set of attributes defining a hierarchy of aggregation levels. Elements of the cube can then be aggregated along these hierarchies, in order to retrieve summary values for measures.

For example, a 3-dimensional cube with dimensions Store, Product and Date might represent the sales in a chain store; the measures could be Quantity and Revenue. In this case, for each product, each element of the cube would measure the quantity sold in one store in one day and the corresponding revenue. An interesting aggregation could be that computing the total monthly revenue for each category of products.

The design of a data warehouse goes through successive phases, among which are conceptual design, logical design and physical design. The objective of logical design, relevant for this paper, is the minimization of query response time. This is obtained by pre-defining a set of queries, called workload, that the system is likely to have to answer more often. This is possible on the one hand, because the user typically knows in advance which kind of data analysis will be carried out more often for decisional or statistical purposes, and on the other hand, because a substantial amount of queries are aimed at extracting summary data to fill standard reports. Actually, taking into account all possible queries is computationally infeasible, but it is possible to identify a reduced set
of significant and frequent queries which are considered to be representative of the actual workload.

More formally, a cube f is a 4-tuple $<\text{Patt}(f), \text{Meas}(f), \text{Attr}(f), R>$, where:

- $\text{Patt}(f)$ is a set of dimensions;
- $\text{Meas}(f)$ is a set of measures;
- $\text{Attr}(f)$ is a set of attributes (being the dimensions particular attributes, we have $\text{Patt}(f) \subseteq \text{Attr}(f)$);
- R is a set of functional dependencies $a_i \rightarrow a_j$ defined between pairs of attributes in $\text{Attr}(f)$, where $a_i \rightarrow a_j$ denotes both the case in which a_i directly determines a_j and the case in which a_i transitively determines a_j.

Obviously every attribute which is not a dimension itself must be derivable from a dimension, that is $\forall a_j \in \text{Attr}(f) \setminus \text{Patt}(f) \exists a_i \in \text{Patt}(f) : a_i \rightarrow a_j$.

In the TPC-D benchmark [10], which consists of a database of orders issued to a company, one of the cubes of interest represents order line items; it is named LineItem and is defined by:

$\text{Patt}(\text{LineItem}) = \{\text{Part}, \text{Supplier}, \text{Order}, \text{ShipDate}, \text{ShipMode}, \text{ReturnFlag}, \text{ReceiptDate}, \text{CommitDate}, \text{Status}\}$,

$\text{Meas}(\text{LineItem}) = \{\text{UnitPrice}, \text{Qty}, \text{ExtPrice}, \text{Discount}, \text{DiscPrice}, \text{Charge}, \text{Tax}\}$

and by attributes with specific functional dependencies.

Given a cube f, an aggregation pattern (or simply a pattern) on f is a set $p, p \subseteq \text{Attr}(f)$, such that no functional dependency exists between any pair of attributes in p: $\forall a_i \in p, \exists a_j \in p : a_i \rightarrow a_j$.

With reference to the LineItem cube, examples of patterns are $\text{Patt}(f), \{\text{Part}, \text{OMonth}, \text{SNation}\}$, $\{\text{Brand, Type}\}$, $\{\}$.

Let p_i and p_j be two patterns ($p_i \neq p_j$); p_i is coarser than p_j ($p_i < p_j$) if every element in p_i is either also in p_j or is functionally dependent on some element in p_j. For example, $\{\text{Brand}, \text{CRegion}\} < \{\text{Brand, Customer, Supplier}\}$.

A query q on a cube f is characterized by the pattern $\text{Patt}(q)$ on which data must be aggregated and by the measures $\text{Meas}(q)$ required in output. Part of the queries the user formulates may require comparing measures taken from distinct cubes; in the OLAP terminology, these are called drill-across queries. Intuitively, a drill-across query can be formulated on cubes sharing one or more attributes. Consider for instance the PartSupplier cube characterized by:

$\text{Patt}(\text{PartSupplier}) = \{\text{Part, Supplier, Date}\}$,

$\text{Meas}(\text{PartSupplier}) = \{\text{AvailQty, SupplyCost}\}$

A possible drill-across query is the one comparing the total available quantity and the total quantity sold for each part, characterized by $\text{Patt}(q) = \{\text{Part}\}$, $\text{Meas}(q) = \{\text{AvailQty, Qty}\}$.
Given a cube f, each pattern on f determines a possible view to be materialized. Given a workload expressed as a set of queries, we will call candidate views those being potentially useful to reduce the workload execution cost [1]. Let $\text{Cand}(f)$ be the set of the candidate views for cube f; each $v \in \text{Cand}(f)$ is defined by its pattern $\text{Patt}(v)$. For each cube f, the view at pattern $\text{Patt}(f)$ is always a candidate. We will denote with P the set of patterns of all the candidate views on all the cubes involved in the workload.

3 The Vertical Fragmentation Problem

In presence of a memory constraint, which requires to use a maximum memory size, only a subset of the candidate views can be actually materialized. Thus, several techniques have been proposed to select the subset to be materialized in order to optimize the response to the workload (e.g., [6], [11]). All the approaches in the literature store, for each view $v \in \text{Cand}(f)$, all the measures in $\text{Meas}(f)$. In this paper, we evaluate how the solution can be further optimized by materializing views in fragments including measures requested together by at least one query. In fact, some queries on f may require a subset of $\text{Meas}(f)$; thus, it may be worth materializing fragments including only a subset of $\text{Meas}(f)$ (partitioning). On the other hand, the access costs for drill-across queries may be decreased by materializing fragments which include measures taken from different cubes (unification).

With the term fragmentation we denote both partitioning and unification of views. The approach we propose in this paper is aimed at determining an optimal set of fragments to materialize from the candidate views.

A fragment v is useful to solve query q iff $\text{Patt}(q) \subseteq \text{Patt}(v)$ and $\text{Meas}(q) \cap \text{Meas}(v) \neq \emptyset$. If several fragments are necessary to retrieve all the measures in $\text{Meas}(q)$, they must be aggregated on $\text{Patt}(q)$ and then joined.

In order to specify objective and constraints of fragmentation, some further notation must be introduced.

Given a cube f and a workload Q, it is possible to partition the measures $\text{Meas}(f)$ into subsets (minterms) such that all the measures in a minterm are requested together by at least one query in Q and do not appear separately in any other query in Q. We call terms the sets of measures obtained as the union of any combination of minterms, even from different cubes (of course, all minterms are also terms). We denote with T the set of all terms.

The fragmentation problem can now be modeled over a fragmentation array $\Xi = [x_{ijk}]$, which is a tridimensional array of 0-1 binary variables whose dimensions correspond to the queries $q_i \in Q$, to the patterns $p_j \in P$ and to the terms $t_k \in T$, respectively. Each cell of the array corresponds to a fragment candidate to materialization; setting $x_{ijk} = 1$ means stating that query q_i will be answered accessing (also) the fragment defined by the measures in t_k and pattern p_j.

A value assignment for variables x_{ijk} is feasible if:

1. for every query, each measure required is obtained by one and only one fragment;
2. for every pattern, each measure is contained in one and only one fragment.

The objective function to minimize is based on the number of disk pages to access in order to satisfy the workload.

3.1 Mathematical formulation

Problem VFP can be formulated as follows. Let Q be the index set of the queries in the workload and P the index set of the patterns in I. For every query $i \in Q$, P_i denotes the subset of P containing the indices of all patterns p_j which are useful to solve query q_i ($\text{Patt}(q_i) \leq p_j$) and for which $p_j = \text{Patt}(v)$, where v is a candidate view for at least a cube f involved in query i, i.e., $v \in \text{Cand}(f)$.

The index set T contains the indices of the terms in I; we will further denote by T_i the subset of indices of the terms which contains at least one measure in $\text{Meas}(q_i)$ ($i \in Q$).

Problem VFP asks to minimize the workload execution cost, subject to a number of constraints. The cost is computed as the sum of the costs c_{ijk} of obtaining, for each query $i \in Q$, the relevant term $k \in T_i$ from pattern $j \in P_i$.

Let x_{ijk} be a 0-1 variable which is equal to 1 if and only if query i is executed on pattern j to get the term k. Let y_{jk} be a 0-1 variable which is equal to 1 if and only if the pattern j is used to get the term k, in which case an amount b_{jk} of disk space out of the maximum available space amount B is needed. Problem VFP is then as follows.

\[
(VFP) \quad \min \sum_{i \in Q} \sum_{j \in P_i} \sum_{k \in T_i} c_{ijk} x_{ijk} \tag{1}
\]

\[
s.t. \quad \sum_{j \in P_i} \sum_{k \in T_i} x_{ijk} = 1 \quad i \in Q \tag{2}
\]

\[
\sum_{j \in P, k \in T} y_{jk} \leq 1 \quad j \in P \tag{3}
\]

\[
x_{ijk} \leq y_{jk} \quad i \in Q, j \in P, k \in T_i \tag{4}
\]

\[
\sum_{j \in P} b_{jk} y_{jk} \leq B \tag{5}
\]

\[
x_{ijk} \in \{0, 1\} \quad i \in Q, j \in P, k \in T \tag{6}
\]

\[
y_{jk} \in \{0, 1\} \quad j \in P, k \in T \tag{7}
\]

Equations (2) impose that each measure specified in a query must be obtained by one and only one pattern (thus, implicitly, that each query in the workload must be satisfied); inequalities (3) require that, in each pattern, a measure can belong to only one term; inequalities (4) link the x and y variables and inequality (5) is the memory knapsack constraint. Finally, constraints (6) and (7) are the integrality constraints.
By a linear relaxation of integrality constraints we get problem LVFP whose optimal solution value $z(LVFP)$ constitutes a lower bound to $z(VFP)$.

Remark. Consider a problem VFP’ which is obtained from VFP by fixing to 1 some x_{ijk} variable. Since fixing a x_{ijk} entails fixing to one the corresponding y_{jk} variable due to constraints (4), and since fixing to 1 a x_{ijk} entails fixing to 0 all variables appearing with it in the relevant constraints (2), it follows that VFP’ is a subproblem of VFP having less variables (all the fixed ones can be disposed of) and less constraints (all those defined only over the expunged variables). Moreover, the value of B in constraint (5) is decreased by the amount corresponding to the sum of the b_{jk} of the y_{jk} variables fixed to 1. The partial solution PS will have a cost $z(PS)$ due to the fixed x_{ijk} variables. A lower bound to the cost of the best solution S containing PS is obviously $z'(S) = z(PS) + z(VFP')$. It is easy to notice that $z(VFP')$ can be approximated from below by adding the optimal values of the dual variables associated to the constraints of problem LVFP maintained in problem VFP’.

4 The ANTS metaheuristic

ANTS [8] is a technique to be framed within the Ant Colony Optimization (ACO) class, whose first member called Ant System was initially proposed by Colomi, Dorigo and Maniezzo [2]. The main underlying idea of all ACO algorithms is that of parallelizing search over several constructive computational threads, all based on a dynamic memory structure incorporating information on the effectiveness of previously obtained results and in which the behavior of each single agent is inspired by the behavior of real ants.

The collective behavior emerging from the interaction of the different search threads has proved effective in solving combinatorial optimization problems.

An ant is defined to be a simple computational agent, which iteratively constructs a solution for the problem to solve. Partial problem solutions are seen as states: each ant moves from a state i to another one ψ, corresponding to a more complete partial solution. At each step σ, each ant k computes a set $A^k_\sigma(i)$ of feasible expansions to its current state, and moves to one of these according to a probability distribution specified as follows.

For ant k, the probability $P^k_{\psi|\sigma}$ of moving from state i to state ψ depends on the combination of two values:

1. the attractiveness $\eta_{\psi|\sigma}$ of the move, as computed by some heuristic indicating the \emph{a priori} desirability of that move;
2. the trail level $\tau_{\psi|\sigma}$ of the move, indicating how proficient it has been in the past to make that particular move: it represents therefore an \emph{a posteriori} indication of the desirability of that move.

In ANTS, the attractiveness of a move is estimated by means of lower bounds (upper bounds in case of maximization problems) to the cost of the completion of
a partial solution. In fact, if a state \(\iota \) corresponds to a partial problem solution it is possible to compute a lower bound to the cost of a complete solution containing \(\iota \). Therefore, for each feasible move \((\iota \psi)\), it is possible to compute the lower bound to the cost of a complete solution containing \(\psi \): the lower the bound the better the move. The use of LP bounds is a very effective and straightforward general policy, whenever tight such bounds have been identified for the problem to solve.

Trails are updated when all ants have completed a solution, increasing or decreasing the level of trails corresponding to moves that were part of “good” or “bad” solutions, respectively.

The specific formula for defining the probability distribution of moving from a state to another one makes use of a set \(tabu_k \) which indicates a problem-dependent set of infeasible moves for ant \(k \). Different authors use different formulae, but according to the ANTS approach \([8]\) probabilities are computed as follows: \(p^k_{\psi} \) is equal to 0 for all moves which are infeasible (i.e., they are in the tabu list), otherwise it is computed by means of formula (8), where \(\alpha \) is a user-defined parameter \((0 \leq \alpha \leq 1)\).

\[
p^k_{\psi} = \frac{\alpha \cdot \tau_{\psi} + (1 - \alpha) \cdot \eta_{\psi}}{\sum_{(\lambda \nu) \in tabu_k} (\alpha \cdot \tau_{\lambda \nu} + (1 - \alpha) \cdot \eta_{\lambda \nu})}
\]

Parameter \(\alpha \) defines the relative importance of trail with respect to attractiveness. After each iteration \(t \) of the algorithm, that is when all ants have completed a solution, trails are updated following formula (9).

\[
\tau_{\psi}(t) = \tau_{\psi}(t - 1) + \Delta \tau_{\psi}
\]

where \(\Delta \tau_{\psi} \) represents the sum of the contributions of all ants that used move \((\psi \iota)\) to construct their solution. The ants’ contributions are proportional to the quality of the achieved solutions, i.e., the better an ant solution, the higher will be the trail contribution added to the moves it used.

In ANTS, the trail updating procedure evaluates each solution against the last \(k \) ones globally constructed by ANTS. As soon as \(k \) solutions are available, their moving average \(\bar{\tau} \) is computed; each new solution \(\bar{z}_{curr} \) is compared with \(\bar{\tau} \) (and then used to compute the new moving average value). If \(\bar{z}_{curr} \) is lower than \(\bar{\tau} \), the trail level of the last solution’s moves is increased, otherwise it is decreased. Formula (10) specifies how this is implemented:

\[
\Delta \tau_{\psi} = \tau_0 \cdot \left(1 - \frac{\bar{z}-\bar{z}_{curr}}{\bar{z} - LB} \right)
\]

where \(\bar{\tau} \) is the average of the last \(k \) solutions and \(LB \) is a lower bound to the optimal problem solution cost.

Based on the described elements, the ANTS metaheuristic is the following.

ANTS algorithm

1. (Initialization)
 - Compute a (linear) lower bound \(LB \) to the problem to solve.
 - Initialize \(\tau_{\psi}, \forall (\iota, \psi) \).

2. (Construction)
 For each ant k do
 \[\text{repeat} \]
 \[\text{compute } \eta_{k,\phi}, \psi(s,\psi), \text{ as a lower bound to the cost of a complete} \]
 \[\text{solution containing } \psi. \]
 \[\text{choose the state to move to, with probability given by (8).} \]
 \[\text{append the chosen move to the } k\text{-th ant's set } tab_k. \]
 \[\text{until ant } k \text{ has completed its solution.} \]
 \[\text{end for.} \]

3. (Trail update)
 For each ant move ($\mu\psi$) do
 \[\text{compute } \Delta T_{\mu\psi}. \]
 \[\text{update the trail matrix by means of (9) and (10).} \]
 \[\text{end for.} \]

4. (Terminating condition)
 If not(end-test) go to step 2.

Fig. 1. Pseudo code for the ANTS algorithm

The metaheuristic just introduced must be specified to make it an algorithm, that is a heuristic procedure for problem VFP. The only element to define is the lower bound to use as an estimate of the attractiveness of a move.

The lower bound used was the linear time approximation of the dual solution introduced in remark 1. That is, at every step we compute the cost of the partial solution so far constructed and we remove from the mathematical representation of the problem all constraints of type (2) and (4) which are saturated by the incumbent solution and all variables which cannot belong to any feasible solution due to those already fixed. The lower bound is obtained as the sum of all dual variables associated with the remaining constraints, with the values computed in the optimal solution of the linear relaxation of the whole problem.

5 Computational results

The ANTS algorithm described in Section 4 has been coded in Microsoft Visual C++ and run on a Pentium III, 733 MHz machine working under Windows 98. As a linear programming solver, in order to compute the lower bounds we used CPLEX 6.6. The test set has been obtained from the TPC-D benchmark [10], which is a standard in the data warehousing field. The benchmark is defined on a 1 Gb sized database composed by 3 star schemes and contains data about items sold by a company. Since the standard TPC-D contains only 17 queries, to generate more challenging instances we added 13 queries structurally similar to the already present ones, as already proposed in [4]. The set of candidate views is obtained by means of the approach proposed in [1]. ANTS allowed us to select the subset of the fragments to be materialized, optimizing the query response time by reducing the number of disk pages to be accessed under the
given memory constraint. In order to evaluate the algorithm effectiveness, we have defined a number of instances, all derived from the TPC-D by randomly selecting a progressively greater subset of the 40 queries.

Experimental runs are still under way. Table 1 shows the preliminary results obtained so far. The table columns show:
- the problem name (prob), where the number indicates how many queries were used to build the instance;
- the number of constraints (m);
- the number of variables (n);
- the number of constraints which can be removed by a specific preprocessing routine (reduct);
- the lower bound \(z(LVFp) \) (lvfp);
- the cpu time to compute \(z(LVFp) \) (t lvfp);
- the percentual deviation from \(z(LVFp) \) of the upper bound (zub);
- the cpu time to compute the ANTS upper bound (t zub).

Problems VFP3 and VFP5 are small-sized problems that we used to fine tune the algorithm elements. For all other problem dimensions we present three instances, which were obtained by randomly selecting the specified number of queries out of the possible 40. Notice the high variability of difficulty deriving from different query sets.

On the small instances, ANTS was able to identify the optimal solution, as testified by the fact that the lower bound has a cost equal to that of the best solution found by ANTS. On bigger instances, the distance between \(z(LVF) \) and the best solution cost found by ANTS increases with the problem size; on those instances more CPU time than the 30 minutes allowed in this test is needed to get good quality results.

6 Conclusions

In this paper we presented a preliminary report about the use of a state-of-the-art metaheuristic approach for optimizing the materialization of fragmented views in data warehouses. We have shown how the problem is amenable to mathematical programming formalization and how efficient lower bounds can be derived.

The lower bound has been embedded in an ANTS framework, obtaining a heuristic approach for solving the materialization (or vertical fragmentation) problem. Preliminary computational results on standard problem test sets from the literature confirm that the proposed approach is promising.

However, further work need to be accomplished. Specifically, implementation details, such as the use of efficient data structures and the definition of a well-tuned local optimization procedure, still have to be defined and possible different mathematical formulations should be studied.

References

<table>
<thead>
<tr>
<th>prob</th>
<th>m</th>
<th>n</th>
<th>reduct</th>
<th>lvfp</th>
<th>t lvfp</th>
<th>zub</th>
<th>t zub</th>
</tr>
</thead>
<tbody>
<tr>
<td>VFP3</td>
<td>94</td>
<td>76</td>
<td>20</td>
<td>50475.0</td>
<td>0.05</td>
<td>0.00</td>
<td>7.34</td>
</tr>
<tr>
<td>VFP5</td>
<td>729</td>
<td>704</td>
<td>34</td>
<td>261816.2</td>
<td>0.22</td>
<td>2.18</td>
<td>11382.22</td>
</tr>
<tr>
<td>VFP10A</td>
<td>4780</td>
<td>5338</td>
<td>245</td>
<td>65190.0</td>
<td>0.66</td>
<td>0.00</td>
<td>568.37</td>
</tr>
<tr>
<td>VFP10B</td>
<td>360</td>
<td>358</td>
<td>5</td>
<td>33976.0</td>
<td>0.06</td>
<td>0.00</td>
<td>1367.23</td>
</tr>
<tr>
<td>VFP10C</td>
<td>592</td>
<td>512</td>
<td>97</td>
<td>116463.0</td>
<td>0.11</td>
<td>0.00</td>
<td>4.23</td>
</tr>
<tr>
<td>VFP15A</td>
<td>4962</td>
<td>5528</td>
<td>242</td>
<td>67971.0</td>
<td>0.82</td>
<td>0.12</td>
<td>1046.24</td>
</tr>
<tr>
<td>VFP15B</td>
<td>2365</td>
<td>2544</td>
<td>108</td>
<td>132775.7</td>
<td>0.39</td>
<td>0.72</td>
<td>384.38</td>
</tr>
<tr>
<td>VFP15C</td>
<td>6410</td>
<td>7118</td>
<td>317</td>
<td>260663.2</td>
<td>4.67</td>
<td>2.03</td>
<td>183.59</td>
</tr>
<tr>
<td>VFP20A</td>
<td>9466</td>
<td>1097</td>
<td>405</td>
<td>128094.4</td>
<td>10.77</td>
<td>3.28</td>
<td>428.39</td>
</tr>
<tr>
<td>VFP20B</td>
<td>7745</td>
<td>8285</td>
<td>326</td>
<td>165426.2</td>
<td>2.41</td>
<td>3.92</td>
<td>1634.33</td>
</tr>
<tr>
<td>VFP20C</td>
<td>36854</td>
<td>40108</td>
<td>1358</td>
<td>166915.7</td>
<td>100.46</td>
<td>10.77</td>
<td>823.48</td>
</tr>
<tr>
<td>VFP25A</td>
<td>25855</td>
<td>28121</td>
<td>874</td>
<td>173367.4</td>
<td>10.99</td>
<td>6.57</td>
<td>1772.16</td>
</tr>
<tr>
<td>VFP25B</td>
<td>8182</td>
<td>8766</td>
<td>314</td>
<td>169133.6</td>
<td>2.47</td>
<td>19.27</td>
<td>1003.80</td>
</tr>
<tr>
<td>VFP25C</td>
<td>57964</td>
<td>62733</td>
<td>1865</td>
<td>145473.3</td>
<td>26.90</td>
<td>33.98</td>
<td>204.55</td>
</tr>
<tr>
<td>VFP30A</td>
<td>44758</td>
<td>48133</td>
<td>1339</td>
<td>237247.4</td>
<td>118.36</td>
<td>22.00</td>
<td>1538.23</td>
</tr>
<tr>
<td>VFP30B</td>
<td>62973</td>
<td>67484</td>
<td>1735</td>
<td>268861.4</td>
<td>343.29</td>
<td>35.76</td>
<td>704.86</td>
</tr>
<tr>
<td>VFP30C</td>
<td>75489</td>
<td>81026</td>
<td>2206</td>
<td>178171.3</td>
<td>625.99</td>
<td>43.68</td>
<td>859.11</td>
</tr>
</tbody>
</table>

Table 1. ANTS results on the set of VFP test problems

