
Metaphor-based Semantic Browsing in M-FIRE

Andrea Proli
DEIS, University of Bologna

Bologna, Italy

Stefano Rizzi
DEIS, University of Bologna

Bologna, Italy

Matteo Golfarelli
DEIS, University of Bologna

Bologna, Italy

Keywords
Semantic Web, RDF, Visual Interfaces

1. INTRODUCTION AND MOTIVATION
Though the syntax of RDF is designed to be human-

readable, most end-users are not familiar with it. Thus,
tools have been developed that (1) generate visual presen-
tations of RDF statements and (2) translate user actions
performed on those presentations into queries over the RDF
knowledge base. An open problem in this field is to guar-
antee a satisfactory compromise between expressivity and
domain-independence. The former is meant as the capa-
bility of delivering an intuitive visualization of knowledge
and some tailored navigation primitives to end-users work-
ing in a given application domain, while the latter is aimed
at accomplishing a high degree of reusability. Most exist-
ing tools, e.g. [2, 3], favor domain-independence by visually
presenting constructs – such as classes and specializations –
that are familiar to knowledge engineers but not to domain
experts. The same holds for most Protégé plug-ins except
Jambalaya [1], that allows users to associate custom seman-
tics to the same graphical primitive, namely containment.
Indeed, though domain-specific formalisms have a lower de-
gree of reusability, they provide graphically richer constructs
better understood by domain experts.

An approach to achieve a nice trade-off between reusabil-
ity and expressivity is to decouple the mechanism for
transforming RDF documents into an expressive visual-
ization from the criteria that drive the transformation.
In this demonstration we present M-FIRE (Metaphor-
based Framework for Information Representation and
Exploration), a configurable framework for semantic brows-
ing of RDF-based knowledge, relying on the adoption of cus-
tom metaphors. Metaphors drive the process through which
visual presentations are obtained for a given document, and
define how queries are generated upon user actions. M-
FIRE generalizes the approach pursued by current tools,
which provide representations for individuals only, by al-
lowing metaphors to specify the representation of more com-
plex information patterns, namely sets of statements. The
demonstration will be focused on (1) showing how users can
perform semantic browsing by relying on domain-specific
and intuitive visualizations of concepts, thus interacting in a
simple manner with complex knowledge, and (2) illustrating
how flexibility and reusability are effectively achieved in our
framework by the use of metaphors.

Demos and Posters of the3rd European Semantic Web Conference
(ESWC 2006), Budva, Montenegro, 11th - 14th June, 2006

2. APPROACH OVERVIEW
The overall functional architecture of our framework is

sketched in Figure 1. First of all, we rely on an RDF server
that, given a SPARQL query, returns a result as an RDF
document (from now on, the source). We will use the Jena
engine to this end. The metaphor selector takes the source
and returns the best suited metaphor for its fruition, accord-
ing to the vocabulary of the source. The metaphor consists
of a representation metaphor and a navigation metaphor.
The representation metaphor is given as input to the repre-
senter, which applies the directives contained in it to gener-
ate a representation describing in an abstract form, indepen-
dently of any implementation detail, how concepts will be
visualized. Then, a properly chosen encoder translates the
representation into a concrete form, called encoding (e.g.,
an HTML document), which can be given as input to the
end-user’s rendering program (e.g., a Web browser). The
choice of the best suited encoder for a given representation
is carried out by the encoder selector, again based on the
representation vocabulary.

Once rendering has been completed by the rendering pro-
gram, end-users are allowed to interact with it. Events gen-
erated by user actions are captured by the controller, which
creates an event description in the form of an OWL doc-
ument describing the occurred event (for instance, a user’s
double click on an icon representing a soccer player). The
event description is then given as input to the navigator to-
gether with the chosen navigation metaphor. In the same
way as the representation metaphor tells the representer
which representation must be produced for a given source,
the navigation metaphor tells the navigator which SPARQL
query must be formulated for a given event. The resulting
query is then forwarded to the RDF server, and the process
is repeated.

Some details on the different phases are given in the fol-
lowing subsections.

2.1 Representation
Representation is the process of obtaining a document in

which certain graphical drawings are associated to certain
(kinds of) statements belonging to the source, according to
the directives contained in the representation metaphor. In
order to provide a general solution, representation is split
into two phases, namely enrichment and mapping, and the
representation metaphor is split accordingly, namely into an
enrichment metaphor and a mapping metaphor.

Enrichment exploits the enrichment metaphor to augment
the source with new classifications and concept definitions.
This is done by launching the Pellet reasoner (which sup-



Figure 1: Overall functional architecture for M-FIRE

Figure 2: Two representations obtained by applying

different metaphors to the same source

ports OWL-DL reasoning) on the merge between the source
and the enrichment metaphor. Mapping interprets the direc-
tives contained into the mapping metaphor to carry out the
association of particular visual items and graphical styles
to certain kinds of statements in the document resulting
from enrichment. This is done by translating the map-
ping metaphor into a set of SPARQL CONSTRUCT queries,
executed by the ARQ SPARQL engine, whose results are
then properly merged to create the representation. Notably,
a crisp separation between enrichment and mapping gives
metaphor designers a better control over the kind of infer-
ences and classifications that are performed, also increasing
the flexibility and the modularity of design.

2.2 Encoding
Encoding consists in translating the representation into a

document that can be parsed by a proper program to pro-
duce a graphical rendering. Many formats could be used
to this end: for instance, two circles connected by a line
could be encoded as both a GraphML document and an
SVG document; a table containing names and photos could
be encoded as an SVG document as well as an HTML docu-
ment. We developed two different encoders, one for HTML
and one for GraphML. Figure 2 shows the HTML rendering
of two representations obtained by applying different repre-
sentation metaphors to the same RDFS source containing
information about soccer players. To the left, soccer teams
are the focus of interest and they are rendered as a list of
players; to the right, goalscorers are shown together with
their score.

A relevant issue concerning encoding is semantic anno-
tation, that traces a correspondence between the graphical
items used to represent a given set of statements and the
represented statements themselves. Such correspondence is
first established at a conceptual level by the representer,
then embedded into the encoding. There, such annotations
can be used by the end-user’s rendering program to integrate
graphical information with semantic information.

2.3 Navigation
Navigation is the interaction schema triggered by a user

action upon the visual presentation of a given piece of knowl-
edge, and it consists in translating that action into a query
over the underlying knowledge base. In order to enhance
flexibility, the directives for this translation are contained
in a navigation metaphor. Remarkably, the representation
and the navigation metaphors are independent of each other:
e.g., a navigation metaphor could state that a double click on
an item representing a soccer player should trigger a query
for retrieving the soccer team in which that player is en-
rolled, whatever its visual representation is.

Navigation is carried out in two steps. First, the controller
captures the actions performed by the user on the current
rendering and describes them in the form of an OWL docu-
ment, by relying on the semantic annotations in the encod-
ing. The controller needs to be tightly integrated with the
rendering program; we developed two controllers: one is a
simple HTML viewer that uses the Microsoft WebBrowser
ActiveX control for rendering, the other is a plug-in for
Protégé that uses the yFiles library for rendering GraphML
documents. Then, the navigator parses a set of directives
contained in the navigation metaphor to produce, from the
event description, a DESCRIBE SPARQL query which is
then sent to the RDF server for execution.

3. REFERENCES
[1] M. Storey et al. Jambalaya: Interactive visualization to

enhance ontology authoring and knowledge acquisition
in Protégé. In Proc. Workshop on Interactive Tools for
Knowledge Capture, 2001.

[2] F. Van Harmelen et al. Ontology-based information
visualisation. In Proc. Workshop on Visualization of
the Semantic Web, pages 546–554, 2001.

[3] R. Volz et al. KAON SERVER - a semantic web
management system. In Proc. WWW, 2003.


