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Abstract.  In the context of multidimensional databases implemented on
relational DBMSs through star schemes, the most effective technique to
enhance performances consists of materializing redundant aggregates called
views. In this paper we investigate the problem of vertical fragmentation of
views aimed at minimizing the workload response time. Each view includes
several measures which not necessarily are always requested together; thus,
the system performance may be increased by partitioning the views into
smaller tables. On the other hand, drill-across queries involve measures
taken from two or more views; in this case the access costs may be decreased
by unifying these views into larger tables. After formalizing the
fragmentation problem as a 0-1 integer linear programming problem, we
define a cost function and outline a branch-and-bound algorithm to
minimize it. Finally, we demonstrate the usefulness of our approach by
presenting a set of experimental results based on the TPC-D benchmark.

1 Introduction

Recently, multidimensional databases have gathered wide research and market interest
as the core of decision support applications such as data warehouses [1][11]. A
multidimensional database (MD) can be seen as a collection of multidimensional
ÒcubesÓ centered on facts of interest (for instance, the sales in a chain store); within a
cube, each cell contains information useful for the decision process, i.e., a set of
numerical measures, while each axis represents a possible dimension for analysis.

An MD implemented on a relational DBMS is usually organized according to the
so-called star scheme [13], in which each cube is represented by one fact table storing
the measures and one denormalized dimension table for each dimension of analysis.
The primary key of each dimension table (usually a surrogate key, i.e., internally
generated) is imported into the fact table; the primary key of the fact table is defined
by the set of these foreign keys. Each dimension table contains a set of attributes
defining a hierarchy of aggregation levels for the corresponding dimension.

The basic mechanism to extract useful information from elemental data in MDs is
aggregation. In order to improve the system performance for a given workload, an MD
typically stores, besides the elemental values of measures, also values summarized
according to some aggregation patterns, i.e., sets of attributes taken from dimension
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tables to define the coarseness of aggregation. Even data summarized according to each
pattern are organized into a star scheme, whose fact table is called a view and imports
the attributes included in the pattern; measure values are obtained by applying an
aggregation operator to the data in another fact table with a finer pattern. In the
following we will use the term view to denote either the fact tables containing
elemental values (primary views) or those containing aggregated values (secondary
views).

Since pre-computing all the possible secondary views is unfeasible, several
techniques have been proposed to select the subset of views to materialize in order to
optimize the response to the workload (e.g, [3][12][19]). In this paper we investigate
how the response can be further enhanced by fragmenting views vertically. By vertical
fragmentation we mean the creation of fragments of views, each including measures
taken from one or more views with the same pattern as well as the key associated to
that pattern. Fragmentation may achieve two goals together: partitioning the measures
of a view into two or more tables, and unifying two or more views into a single
table. While partitioning may be useful whenever only a subset of the attributes is
typically required by each query, unification may be convenient when the workload is
significantly affected by drill-across queries, i.e., queries formulated by joining two or
more views deriving from different cubes.

It is remarkable that partitioning entails no significant storage overhead. In fact, on
the one hand, surrogate keys require a few bytes to be stored. On the other, though on
primary views the number of dimensions may exceed the number of measures, this is
less likely on secondary views for two reasons. Firstly, it may be necessary to include
in them also derived measures and support measures for non distributive aggregation
operators [9][10]. Secondly, within a coarse aggregation pattern, one or more
dimensions may be completely aggregated (in this case, the corresponding foreign key
is dropped from the key of the view).

As compared to operational databases, in MDs the benefits of fragmentation are
further enhanced by the multiple query execution plans due to the presence of
redundant secondary views. These benefits are particularly relevant if the MD is
implemented on a parallel architecture; if disk arrays are adopted and fragmentation is
coupled with an allocation algorithm, the queries requiring multiple fragments
allocated on different disks can be effectively parallelized [15][16].

The problem of determining the optimal partitioning given a workload has been
widely investigated within the context of centralized as well as distributed database
systems, considering non-redundant allocation of fragments (for instance, see
[6][14][16]); unfortunately, the results reported in the literature cannot be applied here
since the redundancy introduced by materializing views binds the partitioning problem
to that of deciding on which view(s) each query should be executed. To the best of our
knowledge, the problem of vertical fragmentation in MDs has been dealt with only in
[15], where no algorithm for determining the optimal fragmentation is proposed. In
[7], views are partitioned vertically in order to build dataindices to enhance
performance in parallel implementations of MDs.

In Section 2 we outline the necessary background for the paper. In Section 3 the
vertical fragmentation problem is formalized, a cost function is proposed and a branch-
and-bound approach is proposed. Section 4 presents some results based on the TPC-D
benchmark.



2 Background

2 . 1 Cubes and Patterns

In this paper we will often need to refer to multidimensional objects from a
conceptual point of view, apart from their implementation on the logical level. For
this reason we introduce cubes.

A multidimensional cube f is characterized by a set of dimensions Patt(f), a set of
measures Meas(f) and a set of attributes Attr(f) É Patt(f). The attributes in Attr(f) are
related into a directed acyclic graph by a set of functional dependencies ai®aj. From
now on, by writing ai®aj we will denote both the case in which ai directly determines
aj and that in which ai transitively determines aj. It is required that

  " Î ( ) - ( ) $ Î ( ) ®a Attr f Patt f a Patt f a aj i i j; .

The cube we will use as a working example, LineItem, is inspired by a star scheme
in the TPC-D [18] and describes the composition of the orders issued to a company; it
is characterized by:
Patt(LineItem) = {Part, Supplier, Order, ShipDate},
Meas(LineItem) = {Price, Qty, ExtPrice, Discount, DiscPrice, SumCharge, Tax}
and by the attributes and functional dependencies shown in Fig. 1, where circles
represent attributes (in gray the dimensions).
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Fig. 1. Functional dependencies in the LineItem cube

On relational DBMSs, cubes are usually implemented adopting the star scheme.
The star scheme for LineItem is:
PART (PartId, Part, Brand, MFGR, Type)
SUPPLIER (SupplierId, Supplier, SNation, SRegion)
ORDER (OrderId, Order, ODate, OMonth, OYear, Customer, CNation, CRegion)
SHIPDATE (ShipDateId, ShipDate, SMonth, SYear)
LINEITEM (PartId, SupplierId, OrderId, ShipDateId, Price, Qty, ExtPrice, Discount,

DiscPrice, SumCharge, Tax)

where LINEITEM is the primary view; the other tables are dimension tables. For the
sake of simplicity, we will not consider the possibility of normalizing dimension
tables to obtain snowflake schemes.

Definition 1. Given a cube f, an aggregation pattern (or simply pattern) on f is a
set PÌAttr(f) such that no functional dependency exists between each pair of
attributes in P: 

  
" Î /$ Î ®( )a P a P a ai j i j; .



With reference to the LineItem cube, examples of patterns are Patt(f), {Part, OMonth,
SNation}, {Brand, Type}, {}.

Definition 2. Let Pi and Pj be two patterns; we say that Pi is coarser than Pj (Pi

³ Pj) if   " Î Î( ) Ú $ Î ®( )a P a P a P a ah i h j k j k h; .

For instance, {Brand, CRegion} ³ {Brand, Customer, Supplier}.

2 . 2 The Workload

In principle, the workload for a MD is dynamic and unpredictable. A possible
approach to cope with this fact, adopted in some commercial tools, consists of
monitoring the actual workload while the MD is operating. Otherwise, the designer
may try to determine a core workload a priori: in fact, on the one hand, the user
typically knows in advance which kind of data analysis (s)he will carry out more often
for decisional or statistical purposes; on the other, a substantial amount of queries are
aimed at extracting summary data to fill standard reports.

As to update queries, we believe they should not be included in the workload. In
fact, MDs are typically updated only periodically, in an off-line fashion, and during
this process the database is unavailable for querying. Thus, the update process does
not directly affect the MD performance, and it is sufficient to ensure that it is properly
bounded in time.

Definition 3. The workload is a set of pairs (qi, hi), where qi denotes a query and
hi its expected frequency.
Within the scope of this paper, a query q can be characterized by (1) its pattern,

Patt(q); (2) the set of measures it requires, Meas(q); (3) the selectivity, sel(q), defined
as the ratio between the number of tuples returned by q and the cardinality of the view
at Patt(q). For instance, on LineItem, the query asking for the total quantity of each
medium polished part ordered from each American supplier is characterized by Patt(q)
= {Supplier, Part}, Meas(q) = {Qty} and sel(q) = 0.01 (assuming that 5 supplier
regions and 20 part types are present, that attribute values are uniformly distributed
and that selection predicates are independent, it is sel(q) = 1

5
1
20

× ).

Part of the queries the user formulates may require comparing measures taken from
distinct, though related, cubes; in the OLAP terminology, these are called drill-across
queries.

Definition 4. Let f1,...fm be m  cubes such that $ ³ ( ) " =( )P P Patt f i mi; ,...1 ;
a drill-across query on f1,...fm is a query q characterized by Patt(q) = P and

    
Meas q Meas fi

i m
( ) Í ( )

=1,...
U , Meas(q)ÇMeas(fi)¹Æ for i=1,...m. We call the

projection of q on cube fi the query qi characterized by Patt(qi) = P and Meas(qi) =
Meas(q)ÇMeas(fi).

Consider for instance the cube Shipment characterized by:
Patt(Shipment) = {Part, ShipTo, ShipFrom, ShipMode, ShipDate},
Meas(Shipment) = {QtyShipped, ShippingCost}



and by the attributes and functional dependencies shown in Fig. 2. Since pattern P =
{Part, Customer, ShipDate} and all the other patterns coarser than P are common to
LineItem and Shipment, a possible drill-across query is the one asking for the total
cost paid by the customers of each region to receive each part, characterized by Patt(q)
= {CRegion, Part}, Meas(q) = {DiscountPrice, ShippingCost} and sel(q) = 1.
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Fig. 2. Functional dependencies in the Shipment cube

2.3 Views

Given a cube f, each pattern on f determines a candidate view for materialization.
Several algorithms have been proposed to determine the optimal set of views to be
materialized, often by significantly reducing the search space [3][12]. Discussing these
algorithms is outside the scope of this paper; we will assume that one of them is
applied to determine, for each cube, an optimal set of views. To the best of our
knowledge, no workload-based materialization algorithms in the literature takes drill-
across queries into account; on the other hand, since these queries play a relevant role
within our workload, it is necessary to involve them in the optimization process.
Thus, when applying the materialization algorithm, every drill-across query is
substituted by its projections on the cubes involved.

Let V be the global set of the (primary and secondary) views to be materialized for
the MD considered, as determined by the materialization algorithm. Given view vÎV,
we will denote with Patt(v) and Meas(v), respectively, the pattern on which v is
defined (determined by its primary key) and the set of measures it contains. The
primary view for cube f is characterized by Patt(v) = Patt(f) and Meas(v) = Meas(f); the
secondary views for f by Patt(v) ³ Patt(f) and Meas(v) = Meas(f).

Given query q and view v, q can be answered on v if Patt(q) ³ Patt(v) and Meas(q)
Í Meas(v). In particular:

· If q involves only measures from a single cube f, it can always be answered on
the primary view for f or, more conveniently, on any secondary view v for f
provided that Patt(q) ³ Patt(v).

· If q is a drill-across query on cubes f1,...fm, by definition it is Patt(q) ³ Patt(fi) for
each i; thus, q can be solved by first solving all the projections of q on the m
cubes, then performing a join between the results (the join attributes are those in
Patt(q)).



3 Vertical Fragmentation of Views

Each view includes measures which describe the same cube but, within the workload,
may be often requested separately. Thus, the system overall performance may be
increased by partitioning the views determined from the materialization algorithm into
smaller tables, each including only the measures which typically appear together
within the queries. On the other hand, drill-across queries can be solved by joining
views defined on different cubes. The access costs for these queries may be decreased
by unifying two or more views on the same pattern into larger tables where all the
measures required are stored together.

With the term fragmentation we denote both partitioning and unification of
(primary or secondary) views. The approach we propose is aimed at determining an
optimal fragmentation of the views in the set V.

It is remarkable that the effectiveness of fragmentation for MDs may be higher
than for operational non-redundant databases; in fact, while in the latter case it is
known a priori on which table(s) each query will be executed, in MDs the presence of
redundant views makes multiple solutions possible. In the following we consider an
example on LineItem. Let V = {v1, v2}, where
Meas(v1) = Meas(LineItem); Patt(v1) = {SNation, Brand}
Meas(v2) = Meas(LineItem); Patt(v2) = {SNation, Part, ODate}
Let the workload include two queries q1 and q2 defined as follows:
Meas(q1) = {Price, Qty, Discount, ExtPrice, DiscPrice}; Patt(q1) = {SNation, Brand}
Meas(q2) = {Tax, DiscPrice, SumCharge}; Patt(q2) = {SNation, Brand}
It is convenient to execute both q1 and q2 on v1 since its cardinality is lower than that
of v2 (Patt(v1) > Patt(v2)). Now, consider a fragmentation including four fragments:
Meas(vÕ1) = {Price, Qty, Discount, ExtPrice, DiscPrice}; Patt(vÕ1) = Patt(v1)
Meas(vÓ1) = {Tax, SumCharge}; Patt(vÓ1) = Patt(v1)
Meas(vÕ2) = {DiscPrice}; Patt(vÕ2) = Patt(v2)
Meas(vÓ2) = {Price, Qty, Discount, ExtPrice, Tax, SumCharge}; Patt(vÓ2) = Patt(v2)
This solution is optimal for q1, which will be executed on vÕ1. As to q2, while Tax and
SumCharge are retrieved from vÓ1, it might be more convenient to retrieve DiscPrice
from vÕ2 rather than from vÕ1, depending on the trade-off between reading less measures
and accessing less tuples. In general, another factor to be considered in the trade-off is
the number of attributes forming the fact table key: for coarser patterns, the length of
the key is shorter and the size of the tuples read is smaller. The possibility of
answering a query by jointly accessing fragments of different patterns, impacts on the
optimization of the query execution tree by enabling additional push-downs and pull-
ups of group-by operators.

3 . 1 Problem Statement

In principle, the fragmentation algorithm should be applied to the whole set of views,
V. On the other hand, it may be convenient to unify two measures belonging to two
different cubes fÕ and fÓ only if at least two views with the same pattern have been
materialized on fÕ and fÓ and the workload includes at least one drill-across query on fÕ



and fÓ which can be answered on these two views; in this case, we say that fÕ and fÓ
are strictly related. Two cubes are related if (1) they are strictly related or (2) a third
cube related to both exists. The transitive notion of relatedness induces a partitioning
onto the set of cubes belonging to the MD, which in turn partitions the set of queries
and the set of views according to the cube(s) they are defined on; in order to decrease
complexity, fragmentation is meant to be applied separately to each set of queries on
the corresponding set of related cubes.

Let FS be a set of related cubes and QS be the set of queries on the cubes in FS.
Let VSÍV be the set of views materialized on the cubes in FS and PS be the set of
patterns characterizing the views in VS.

Definition 5. Given cube fÎFS, we partition2 Meas(f) into the largest subsets
of measures which appear all together in at least one query of QS and do not
appear separately in any other query in QS:

  
$ Î Í ( ) Ù " Î ( ) Ç ¹ Æ Þ Í ( )( )q QS M Meas q q QS Meas q M M Meas qi i j j j;  .

We call each subset a minterm of f, and denote with MS(f) the set of all minterms
of f.

For instance, on the LineItem cube, given QS = {q1,q2} where Meas(q1) = {Price, Qty,
ExtPrice, Discount} and Meas(q2) = {Price, Qty, DiscPrice, SumCharge}, it is
MS(LineItem) = {{Price, Qty}, {ExtPrice, Discount}, {DiscPrice, SumCharge}}.

Definition 6 . Given the set of related cubes FS, we define a term as a set of
measures which either is a minterm of a cube in FS or is the union of the
minterms, even from different cubes in FS, within a set MS  such that
" Î $ Î $ Î ¹ Ì ( ) Ù Ì ( )M MS q QS M MS j k M Meas q M Meas qk i j k i j i, , ; . We
denote with TS the set of terms for FS.

For example above, it is TS = MS(LineItem)È{Meas(q1), Meas(q2)}.
Given FS, a solution to the fragmentation problem is encoded by a fragmentation

array, i.e., a binary array C with three dimensions corresponding to, respectively, the
queries qiÎQS, the patterns PjÎPS and the terms TkÎTS. The set of fragments defined
by C is

VS v j k Cjk ijk
qi QS

'= $ ³
ì
í
ï

îï

ü
ý
ï

þïÎ
å; , ; 1

where fragment vjk is characterized by Meas(vjk) = Tk and Patt(vjk) = Pj.
A fragmentation array not only denotes a fragmentation of the views in VS ; at the

same time, it specifies on which fragment(s) each query is assumed to be executed. In
fact, a 1 in cell Cijk denotes that, when answering query qi, the measures in
Meas(qi)ÇTk will be obtained from vjk.

The fragmentation encoded by C  is feasible if the following constraints are
satisfied:

                                                
2 We assume that each measure appears in at least one query of the workload.



(1) For each query, every measure required must be obtained from exactly one
fragment (non ambiguous query execution):

  

" Î " Î ( ) =
æ

è
çç

ö

ø
÷÷

Î ÎÎ ( )³
ååq QS m Meas q Ci i ijk

Tk TS m TkPj PS Patt qi Pj

,
;;

1 .

(2) For each pattern, each measure must belong to at most one fragment (non
redundant fragmentation):
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 (3) Each fragment in VSÕ must be a fragmentation of one or more views in V S
(consistency with the views materialized):

  

" Î " Î ³ " Î $ Î ( ) = Ù Î ( )( )
Î
åP PS T TS C m T v VS Patt v P m Meas vj k ijk k j

qi QS
, ; ;1 .

Though constraint (3) states that every fragment must derive from a view in VS ,
we are not guaranteed that every measure in every view is included in a fragment. In
fact, fragments will be produced only for the minterms, among those deriving from
each view, actually used to answer at least one query. Given a view, we will call lost
minterms those not included in any term generating a fragment. The fragmentation of
primary views must necessarily be lossless, thus, every lost primary minterm must
be reconsidered a posteriori, either by creating a separate fragment or by unifying it
with one of the fragments determined. On the other hand, as to lost minterms from
secondary views, it is not obvious whether generating the fragments is convenient or
not; in fact, the space saved could probably be more profitably employed to store
indices or additional views.

In the following we consider a small example on FS = {LineItem, Shipment}. Let
QS = {q1, q2, q3, q4, q5}; q1, q2, q3 are defined on LineItem, q4 on Shipment and q5 is a
drill-across query:
Meas(q1) = {Price, Qty, Discount}; Patt(q1) = {ShipDate}
Meas(q2) = {ExtPrice, DiscPrice}; Patt(q2) = {Part, Customer}
Meas(q3) = {SumCharge, Tax}; Patt(q3) = {Part, CNation}
Meas(q4) = {QtyShipped, ShippingCost}; Patt(q4) = {CNation, MFGR, ShipDate}
Meas(q5) = {ExtPrice, DiscPrice, ShippingCost};Patt(q5) = {Brand, CNation}
We assume that, besides the primary views v1 and v2, two secondary views v3 and v4
have been materialized on LineItem, one secondary view v5 on Shipment:
Patt(v3) = {Part, Customer}; Patt(v4) = Patt(v5) = {Part, CNation}
(for each view, the measures are those of the corresponding cube). Fig. 3 shows the
fragmentation array which represents a feasible solution to this fragmentation
problem, which features five fragments:
Meas(vÕ1) = {Price, Qty, Discount}; Patt(vÕ1) = Patt(LineItem)
Meas(vÕ2) = {QtyShipped, ShippingCost}; Patt(vÕ2) = Patt(Shipment)
Meas(vÕ3) = {ExtPrice, DiscPrice}; Patt(vÕ3) = Patt(v3)
Meas(vÕ4) = {SumCharge, Tax}; Patt(vÕ4) = Patt(v4)
Meas(vÕ5) = {ExtPrice, DiscPrice, ShippingCost}; Patt(vÕ5) = Patt(v4) = Patt(v5)



the first four of which are obtained by partitioning, the last one by coupling
partitioning and unification. The array also denotes that, for instance, query q1 is
executed on vÕ1.
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Fig. 3. Fragmentation array representing a feasible solution

3 . 2 The Cost Function

Among all the feasible solutions to the fragmentation problem, we are interested in
the one which minimizes the cost for executing the workload. We believe it is
convenient to keep logical design separate from the physical level in order to both
provide a more general solution and reduce complexity; thus, the cost function we
propose intentionally abstracts from any assumptions on the access paths, being based
on the number of disk pages in which the tuples of interest for a given query are
stored. In particular, the cost of query qi within fragmentation C is defined as:
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where:

· ns(Pj) is the cardinality for the view on pattern Pj (estimated for instance as
shown in [8]).

· sel(qi) is the selectivity of qi; thus, sel(qi).ns(Pj) is the number of tuples of the
view on pattern Pj which must be accessed in order to answer qi.

· bjk is the number of tuples per disk page for fragment vjk characterized by Pj and
Tk:

b jk

m Tka Pj

size page
size tuple

size page
size a size m

=
( )
( )

=
( )

( ) + ( )
ÎÎ
åå

 .



Thus, 
ns Pj

jk

( )é

ê

ê
ê

ù

ú

ú
úb
 is the number of pages in which vjk is contained.
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 is the expected number of pages in which the tuples

necessary for qi are stored, estimated with the Cardenas formula F [5].

Thus, cost(qi,C) expresses the total number of disk pages which must be accessed in
order to solve qi. Though the actual number of pages read when executing the query
may be higher depending on the access path followed, we believe that this function
represents a good trade-off between generality and accuracy.

It should be noted that, whenever two views are unified, the resulting fragment
may be used to answer not only drill-across queries, but also queries on the single
cubes; thus, it must contain the union of their tuples. Let fÕ and fÓ be two cubes, let
P be a pattern common to fÕ and fÓ, and let nsÕ(P) and nsÓ(P) be the cardinalities of
views vÕ on fÕ and vÓ on fÓ, respectively. The cardinality of the view unifying vÕ and
vÓ can be estimated as:

ns P ns P ns P ns P ns P
cs P

¢¢¢( ) = ¢( ) + ¢¢( ) -
¢( ) ´ ¢¢( )

( )

where cs(P) is the product of the domain cardinalities for the attributes in P.

3 . 3 A Branch-and-Bound Approach

The problem of vertical fragmentation (VFP) can be formulated as follows: Find, for
the binary decision array C, the value which minimizes function

t t QS t qi
qi QS

icos , cos ,C C( ) = × ( )
Î
å h

subject to constraints (1), (2), (3) expressed in Section 3.1. VFP is a 0-1 integer
linear programming problem like set covering with additional constraints, and is
known to be NP-hard [17]. Thus, a branch-and-bound approach can be adopted to solve
it optimally.

The ingredients of a branch-and-bound procedure for a discrete optimization
problem such as VFP are [1]:

(i) A branching rule for breaking up the problem into subproblems. Let VFPa be
the problem of choosing, given a partial solution to VFP represented by an
ÒincompleteÓ array3 C(VFPa), the remaining elements Cijk to be set to 1 in the
complete solution. We denote with SUB(VFPa) the set of subproblems in
which VFPa is broken up; each is defined by choosing one element Cijk to be
set to 1 in the partial solution, which means adding to the current solution a

                                                
3 Non feasible since one or more queries cannot be answered (constraint (1) is not

satisfied).



fragment on pattern Pj to be used for retrieving some measures Tk to solve query
qi.

(ii) A subproblem selection rule for choosing the next (most promising)
subproblem to be processed. The element Cijk chosen is the one for which ns(Pj)
is minimum and Meas(qi)ÇTk has maximum cardinality.

(iii) A relaxation of VFPa, i.e. an easier problem VFRa whose solution bounds that
of VFPa. We relax VFPa by removing constraint (2): in VFRa, some measures
may be replicated in two or more fragments defined on the same pattern.

(iv) A lower bounding procedure to calculate the cost of the relaxation. VFRa

consists of one set covering problem for each qi, which can be solved by
adopting one of the algorithms in the literature [4]. Since in solving VFRa the
number of eligible fragments is higher than that for VFPa, the cost of VFRa

will be lower or equal to that of VFPa.

4 Experimental Tests

In this paper we have proposed an approach to vertical fragmentation of views in
multidimensional databases. The experimental results we present in this section
confirm the utility of the approach in terms of reduction of the cost for executing the
expected workload. The tests we have carried out are based on the well-known TPC-D
benchmark [18], which features two cubes LineItem and PartSupplier with
cardinalities 6.000.000 and 800.000, respectively; the total amount of data is about 1
Gbyte.

We have tested our approach on the Informix DBMS with a workload based on the
17 TPC-D queries (all with the same frequency). The views to be fragmented have
been selected by means of the heuristic approach to materialization proposed in [3], by
considering a global space constraint of 2 GB (1 GB for primary views + 1 GB for
secondary views); as a result, 11 secondary views were created besides the 2 primary
views. The fragmentation algorithm determined 14 fragments (3 from the primary
views) and 9 lost minterms. Indices on all the attributes belonging to keys in both
fact and  dimension tables were created.

Fig. 4 shows, for each query, the ratio between the number of disk pages read
without and with fragmentation; above each column, the number of disk pages read
without fragmentation. Overall, fragmentation decreases the workload cost from
265904 to 59986 pages (more than 4 times).

Fig. 5 shows how fragmentation affects the total storage space; above each
column, the storage space without fragmentation. Overall, the unfragmented views
require 368840 pages; while materializing only the fragments (no lost minterms)
decreases the space required to 306042 pages (-17.0%), materializing also lost
minterms increases the space required to 442097 pages (+19.8%).

It should be noted that the next view to be materialized beyond the 2 GB constraint
would take 126460 disk pages, and decrease the workload cost by 1%; fragmentation
is more convenient since it takes only 73257 extra pages and decreases the cost by
77%. In fact, while materializing one more view typically benefits few queries,
several queries may take advantage from using the same disk space for fragmentation.
Furthermore, while fragmentation does not require extra space for dimension tables,
each new view may require adding new tuples in dimension tables to be referenced by
the aggregated tuples in the view.
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In order to evaluate the algorithm complexity, we have defined four more
workloads, each progressively extending the TPC-D; the results are shown in Table I.
The computing time does not depend strictly on the workload size, of course it is also
determined by the relationships between the queries.



Table I. Results of the complexity tests

n. queries in the workload n. subproblems generated computing time
17 2775 about 1 min
25 4439 about 2 mins
30 348925 about 30 mins
35 51099 about 12 mins
40 403420 about 75 mins
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