
The Workload You Have, the Workload You Would Like
 Matteo Golfarelli Ettore Saltarelli
 DEIS - University of Bologna DEIS - University of Bologna
 golfare@csr.unibo.it saltaett@csr.unibo.it

Figure 1 shows the framework we assume for our approach:

OLAP applications generate SQL queries whose logs are
periodically elaborated for optimizing the system, but instead of
directly using the workload extracted from the logs, a pre-
optimization phase is carried out in order to determine: 1) a set of
statistical indicators that profiles the workload and determines its
main features, 2) a clustered workload that is representative of the
original one and can be handled by view materialization and
indexing algorithms.

ABSTRACT
Real data warehouse workloads are often too large and complex to
be directly optimized using the algorithms proposed in the
literature for view materialization and indexing. In this paper we
propose the idea of profile as an instrument for summarizing the
workload features in order to help the designer to make the right
choices. The ability of the profile to characterize a workload is
then exploited to move backward using it as an input for an
algorithm that generates a set of queries presenting the desired
features. The algorithm proposed is finally used for creating the
workloads necessary for testing the correspondence between
different profiles and the results of optimization.

 Categories and Subject Descriptors
 H.3.1 [Information Systems]: Information Storage and Retrieval

- Content Analysis and Indexing; H.2.7 [Information Systems]:
Database Management - Database Administration

 General Terms
 Design, Performance, Algorithms.

 Keywords

DW

RDBMS

OLAP
Applications

Profiling &
Clustering

Optimization
algorithms

Query Data

Query Data

Log
data

Workload
Statistical
indicators

Views &
Indexes

Data
volume

Statistical indicators, Clustering, Logical Design, Optimization.

Figure 1: Overall framework for the optimization process
1. INTRODUCTION
During the design of a data warehouse (DW), the phases aimed at
improving the system performance are mainly the logical and
physical ones. A basic requirement for DW users is to obtain
quick answers for their queries and the two main techniques to
reach this goal are view materialization and indexing. Most of the
approaches proposed in the literature rely on the existence of a
reference workload that represents the target for the optimization
[10]. Unfortunately, real workloads are much larger than those
that can be handled by these techniques and thus view
materialization and indexing remain tasks whose success depends
on the experience of the designer that may find acceptable
solutions by adopting rules of thumb and applying the trial-and-
error approach.

In particular, the optimization process can be driven by the
profile that shows the best choices to the designer. For example,
knowing if the workload is more suitable for being optimized by
using view materialization or indexing will make it possible to
assign more disk space to one of the two techniques.

In a previous work [4] we sketched, limitedly to the aspects
related to view materialization, a set of statistical indicators that
proved to be representative of the full workload and we defined a
clustering algorithm capable of reducing the cardinality of the
workload, maintaining at the same time the features of the original
one.

This paper, based on the previous results, presents a complete
study on the concept of workload profile, proposing in particular
two original contributions: first, the workload profile is completed
considering the statistical indicators related to indexes and
discussing how the whole profile should be interpreted in order to
understand at best the workload characteristics. Our qualitative
considerations are tested against the TPC-H/R benchmark [11]
evaluating the relationship between the profile and the execution
cost of different workloads. Furthermore, we move backwards and
propose a workload generation algorithm that produces a GPSJ [6]
workload that respects a given profile. The generated workload
can be used for testing and benchmarking purposes. It is
remarkable that, unlike other fields like pattern recognition and
operational research, this is the first attempt in the database field
to define large and ad-hoc workloads for benchmarking (even
well-known benchmarks like TPC-H/R are supplied with a limited
and fixed set of queries). The ability to easily create large

The gap between academic approaches and real systems could
be filled by techniques capable of determining on the one hand,
the workload characteristics and maintaining, on the other, a
reduced computational complexity.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DOLAP’03, November 7, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-727-3/03/0011…$5.00.

workloads with specific features can strongly reduce the time
devoted to testing and can be very useful in evaluating the
performances in different situations (e.g. fine or coarse
aggregation, selective or unselective queries).

To the best of our knowledge no study, except the preliminary
result proposed in [4], focused specifically on defining a profile
for understanding the workload; nevertheless the idea of
identifying common characteristics to improve the system
performance have been largely used. In particular, clustering
techniques have been proposed for defining groups of similar
queries: in [3] the authors used clustering to reduce the
complexity of the plan selection task. The concept of similarity is
based on a complex set of features that it is necessary to encode
when different queries can be efficiently solved using the same
execution plan. This idea has been implicitly used in several
previous works where a global optimization plan was obtained
given a set of queries [9]. Another field where query similarity
and clustering are often used is Information Retrieval since search
engines need to cluster similar queries to identify FAQ and to
better organize hierarchies of documents [12].

The rest of the paper is organized as follows: Section 2
presents the necessary background, Section 3 defines the
statistical indicators for workload profiling; Section 4 presents the
algorithm for generating the workload, while in Section 5 a set of
experiments, aimed at proving the profile effectiveness, are
reported. Finally, in Section 6 the conclusions are drawn.

2. BACKGROUND
It is recognized that DWs lean on the multidimensional model to
represent data, meaning that indicators that measure a fact of
interest are organized according to a set of dimensions of analysis;
for example, sales can be measured by the quantity sold
and the price of each sale of a given product that took place in a
given store and on a given day. Each dimension is usually related
to a set of attributes describing it at different aggregation levels;
the attributes are organized in a hierarchy defined according to a
set of functional dependencies. For example a product can be
characterized by the attributes PName, Type, Category and
Brand among which the following functional dependencies are
defined: PName→Type, Type→Category and
PName→Brand; on the other hand, stores can be described by
their geographical and commercial location: SName→City,
City→Country, SName→CommmercialArea,
CommercialArea→CommercialZone.

In relational solutions, the multidimensional nature of data is
implemented on the logical model by adopting the so-called star
scheme, made up of a set of (fully denormalized) dimension
tables, one for each dimension of analysis, and a fact table whose
primary key is obtained by composing the foreign keys
referencing the dimension tables. The most common class of
queries used to extract information from a star schema are GPSJ
[6] that consist of a selection, over a generalized projection over a
selection over a join between the fact table and the dimension
table involved. Within the scope of this paper we will assume that
selections are always conjunctive range statements expressed on
attributes in the dimension tables.

It is easy to understand that grouping heavily contributes to
the global query cost and that such a cost can be reduced by
precomputing (materializing) that aggregated information that is
useful to answer a given workload. Unfortunately, in real
applications, the size of such views never fits the constraint given

by the available disk space and it is very hard to choose the best
subset to be actually materialized. When working on a single fact
scheme and assuming that all the measures contained in the
elemental fact table are replicated a view is completely defined by
its aggregation level.

Definition 1 The pattern of a view consists of a set of dimension
table attributes such that no functional dependency exists between
attributes in the same pattern.

Possible patterns for the sales fact are: P1 = {Month,
Country, Category}, P2 = {Year, Sname}, P3 =
{Brand}. In the following we will use indifferently the terms
pattern and view and we will refer to the query pattern as the
coarsest pattern that can be used to answer the query.

Definition 2 Given two views Vi, Vj with patterns Pi, Pj
respectively, we say that Vi can be derived from Vj (Vi ≤ Vj) if the
data in Vi can be calculated from the data in Vj.

Derivability determines a partial-order relationship between the
views, and thus between patterns, of a fact scheme. Such partial-
order can be represented by the so-called multidimensional lattice
[1] whose nodes are the patterns and whose arcs show a direct
derivability relationship between patterns. The multidimensional
lattice is often used to efficiently store the information relevant to
the materialization process but also provides an intuitive
representation of the distribution of the queries with respect to
their aggregation level.

Definition 3. We denote with Pi ⊕ Pj the least upper bound
(ancestor) of two patterns in the multidimensional lattice.

Intuitively the ancestor of two patterns corresponds to the coarsest
one from which both can be derived. Given a set of queries the
ancestor operator can be used to determine the set of views that
are potentially useful to reduce the workload cost (candidate
views). The candidate set can be obtained, starting from the
workload queries, by iteratively adding to the set the ancestors of
each couple of patterns until a fixed point is reached.

As for indexing, the index types considered are B+-tree and
bitmap; we will assume that a B+-tree index is always built on the
key of each table present in the DW, additional indexes can be
built on single attributes belonging to the key of a fact table (to
speed up join) and on attributes in the dimension tables (to speed
up selections).

The cost model we adopted for evaluating the workload cost is
the one proposed in [8]: the execution plan is obtained by making
up a set of base operators corresponding to the base operations
(e.g. access a table, access to an index, execute a join, etc.) whose
cost is expressed in terms of disk pages accessed to retrieve the
data. The set of rules used by the authors to determine the best
plan has been extended by relaxing the constraint of using an
existing index, regardless of the negative impact it could have on
the query cost. Evaluating, each time, the usefulness of an index
makes the optimizer model more realistic.

3. PROFILING THE WORKLOAD
Profiling means determining the values of a set of statistical
indicators that captures the workload features that have an impact
on the effectiveness of different optimization techniques. In

particular, we are interested in those relevant to the problem of
view materialization and indexing that help the designer to answer
queries like:

• “How suitable is the workload for materialization/indexing ?”
• “How difficult will it be to find the best set of views to be

materialized ?”
• “In percentage, how much disk space should be allocated to

indexes or views?”

Given a set of queries W ={Q1,…,Qn}, a profile RW is a quintuple
(AAL, ASK, AS, LSC, ACT), the first two indicators analyze the
behavior of the workload W with respect to aggregation, while the
last three summarize its characteristics in terms of selection
criteria. In the rest of the paper we will refer to RW[i] as the i-th
indicator in the profile. We now present each indicator separately
discussing how its values should be interpreted individually and
with respect to the other ones.

3.1 Indicators on Aggregation Level
AAL and ASK are based on the concept of cardinality of the views
associated to a given pattern that can be estimated knowing the
data volume of the fact scheme that we assume to contain the
cardinality of the base fact table and the number of distinct values
of each attribute in the dimension tables.

The cardinality of an aggregate view can be estimated using
Cardenas’ formula [2] which states that, when throwing N distinct
objects into B buckets, the expected number of buckets in which
at least one object will fall can be estimated as:

() ()NB
B

BNB
N

,min111, ≤

 −−⋅=Φ

In our case the objects are the tuples in the elemental fact table
with pattern P0 (whose number |P0| is assumed to be known)
while the number of buckets is the maximum number of tuples,
|P|Max, that can be stored in a view with pattern P and that can be
easily calculated given the cardinalities of the attributes belonging
to the pattern, thus

Card(P)= Φ(|P|Max ,|P0|)

The aggregation level of a pattern P is calculated as:

||
)(1)(

0P
PCardPAgg −=

Agg(P) ranges between [0,1[, the higher the values the coarser the
pattern. The average aggregation level of the full workload W
={Q1,…Qn} can be calculated as

∑
=

=
n

i
iPAgg

n
AAL

1
)(1

where Pi is the pattern of query Qi. AAL characterizes to what
extent the information required by the users is aggregated and
expresses the willingness of the workload to be optimized using
materialized views. Intuitively, workloads with high values of
AAL will be efficiently optimized using materialized views since
they determine a strong reduction of the number of tuples to be
read. Furthermore, the limited size of such tables allows a higher
number of views to be materialized.

Measuring the aggregation level is not sufficient to
characterize the workload; in fact workloads with similar values

of AAL can behave differently, with respect to materialization,
depending on the attributes involved in the queries. Consider for
example two workloads W1 ={Q1, Q2} and W2 ={Q3, Q4}
formulated on the sales fact scheme and the pattern of their
queries:

• P1 = {Category, City} Card(P1) = 2100
• P2 = {Type, Country} Card(P2) = 1450
• P3 = {Category, Country} Card(P3) = 380
• P4 = {Brand, CommercialZone} Card(P4) = 680

Materializing a single view to answer both the queries in the
workload is much more useful for W1, than for W2 since in the
first case the ancestor is very “close” to the queries (P1⊕
P2={Type, City}) and still coarse, while in the second case it is
“far” and fine (P3⊕ P4={SName, PName}). This difference is
captured by the distance between the two patterns that we
calculate as:

Dist(Pi, Pj) = Agg(Pi) + Agg(Pj) - 2 Agg(Pi ⊕ Pj)

Dist(Pi, Pj) is calculated in terms of distance of Pi and Pj from
their ancestor that is the point of the multidimensional lattice
closest to both the views. Figure 2 shows two different situations
on the same multidimensional lattice: even if the aggregation level
of the patterns is similar, the distance between each couple
changes considerably.

P0

{ }

P0

{ }
Figure 2: Distance between close and far patterns

The average skewness of the full workload W ={Q1,…Qn} can be
calculated as

() ∑ ∑
−

= +=−⋅
=

1

1 1
),(

1
2 n

i

n

ij
ji PPDist

nn
ASK

where Pz is the pattern of query Qz; ASK ranges in [0,2[1 .
Intuitively, workloads with low values for ASK will be efficiently
optimized using materialized views since the similarity of the
query patterns makes it possible to materialize few views to
optimize several queries.

1 The maximum value for ASK depends on the cardinalities of

the attributes and on the functional dependencies defined on the
hierarchies, thus it cannot be defined without considering the
specific star schema.

3.2 Indicators for Selectivity
In order to characterize a workload in terms of its selectivity we
propose three indicators that have proved to be representatives of
the factors that influence the execution cost. The analysis of the
selectivity indicators is harder since the evaluation of their values
must be based on the values of those of the aggregation ones.

The main indicator is the average selectivity that is calculated
as

∑
=

=
n

i
iQsel

n
AS

1
)(1

where the selectivity of each query is defined as

where m∏ =
= im

j jii QselQsel 1 ,)()(i is the number of conditions

for Qi and sel(Qi,j) is the selectivity of the j-th statement (i.e.
percentage of the attribute values selected by the statement); AS
ranges in [0,1]. Intuitively, workloads with lower values of AS
will require a stronger use of indexes; on the other hand,
selectivity itself is not sufficient to characterize the impact of
indexing with respect to materialization since it depends on
“where” and “how” the statements are formulated. In fact, if the
statements are formulated on strongly aggregated data the effect
of materialization could be stronger, regardless of the level of
selectivity. To emphasize this effect a second operator to be
considered is the coefficient of the least-square line (LSC) defined
on the aggregation-selectivity plan by the set of points, one for
each query Qi, having as x-values Agg(Qi) and as y-values Sel(Qi)
(see Figure 3). When LSC is near to zero selectivity is equally
distributed at the different aggregation levels, while when LSC is
positive/negative selectivity is stronger for queries with
lower/higher aggregation level. Compatibly with the values of AS,
workloads with positive values of LSC will be more inclined to be
optimized using indexes with respect to those with negative values
since the effect of selections concerns tables with higher
cardinalities.

Figure 3: The mean-square error line for the aggregation-
selectivity plan

Finally, a third criteria affecting the usefulness of indexes is the
average number of constrained tables:

∑
=

=
n

i
im

n
ACT

1

1

In fact, given a selectivity value AS, workloads with higher values
of ACT will require a higher number of indexes to apply all the
conditions profitably. It should be noted that, even if all the
indexes required are available, indexing will be less effective with
respect to the case with low values for ACT. In fact, for a fixed

AS, a high value of ACT implies unselective conditions that
require more data to be read.

4. GENERATING THE WORKLOAD
Generating a GPSJ workload W over a fact scheme F means
choosing the set of feasible queries over F such that RW does not
differ more than ∆R from a target profile Ropt given as input
together with the desired cardinality |W|. As shown in Figure 4,
generation is a two-step process: initially the set of aggregation
patterns P respecting the target profile are searched in the
multidimensional lattice space, then selectivity criteria are
applied. It should be noted that the workload definition process
does not consider measures assuming that they are always
requested together; this assumption is justified since optimizations
based on vertical fragmentation of fact tables are rarely
considered.

Figure 4: The workloa

Unable to
match Ropt

F, Ropt, |W |

Agg()

Sel()

Very selective
queries on fine
patterns

Low selective
queries on
coarse patterns

4.1 Generation of Patter
P is determined on the multidim
fact hierarchies using a taboo-
iteration, adds a query to the
multidimensional lattice, starting
rule until a pattern respecting Ropt
dimension of the search space on
each node is considered (i.e. th
significant improvement in the sol
pattern is found the partial soluti
worst pattern (i.e. the pattern
increase for ∆R) that is then ad
solution R respects Ropt if

| R[i]- ∆R[i] | < TS[

where TS[i] are thresholds defined
The search fails when no new

partial solution cannot be modif
heuristic nature of the approach n
of the search space that is expone
in the hierarchies but, more
characteristics of the fact do not m
Generation of
Patterns
P, F, Ropt,|W |
Generation of
Selection criteria
Failure
Failure
Success

Success
d generation process
W

ns
ensional lattice induced by the

search approach that, at each
 solution by descending the
from the root, with a depth-first
 is found. In order to reduce the
ly the most promising child of
e child that produce the most
ution profile). When no feasible
on is modified by removing the
that determines the maximum
ded to a taboo-list. A partial

i] i = 1,..2

 by the designer.
 pattern can be added and the

ied. Failures can be due to the
ecessary to limit the dimension
ntial in the number of attributes
 frequently, fails since the

atch the target profile. In other

words, it is not at all possible to find |W | queries with profiles
Ropt.

4.2 Generation of Selection Criteria
Given the set of aggregation pattern P for the queries in the
workload the selectivity sel(Qi) of each query can be set on the
aggregation-selectivity plan by projecting on the ordinate axes the
values of Agg(Qi) by means of the line passing through (AS, AAL)
and having LSC as an angular coefficient (see Figure 5). In fact, it
is possible to prove that the points of the line having x-coordinate
Agg(Qi) will have as y-coordinate the selectivity values that
determine the correct AS in the target profile.

The single selectivity statements are then defined according to
the values of ACT and compatibly with the cardinalities of
attributes in the aggregation patterns. In fact, since it is not always
possible to assign the theoretical selectivity (e.g. a selectivity of
10% on an attribute with 4 distinct values) a compensation
algorithm is required. Compensation increases/decreases the
selectivity of the other statements in order to bring AS back to the
input value. The algorithm is first applied on the other selections
of the same query and then on the statements of the other ones.

Figure 5: The line used to infer the selectivity of the queries
given their aggregation levels.

5. TESTS AND DISCUSSION
In this section we propose a set of tests aimed at proving the
effectiveness of profiling and we discuss how the indicators
should be interpreted as a whole, that is, considering also how the
meaning of one of them is influenced by the values of the others.
Test have been carried out on the TPC-H/R benchmark [11] and in

particular on the LINEITEM fact scheme; as already said the cost
function is the one proposed in [8] that quantifies the workload
cost in the number of disk pages accessed to answer the query.
The fact schema data requires 1.1 Gb considering also the space
used for indexing the primary keys of the tables.

Effectiveness of profiling is measured indirectly analyzing
how workloads with different profiles respond to optimizations
like view materialization and indexing. View materialization is
carried out using the classic approach proposed by Baralis et
al.[1]: the algorithm first determines the set of candidate views
and then heuristically chooses the best subset that fits given space
constraints. Splitting the process into two phases allows us to
estimate both the difficulty of the problem, that we measure in
terms of the number of candidate views, and the effectiveness of
materialization that is calculated in terms of the number of disk
pages saved by materialization. As for indexing we used the
heuristic approach proposed in [5] that, given a set of materialized
views, determines the set of useful indexes (and their types) first,
then chooses the optimal subset based on the saving per disk page
determined by each index.

5.1 Profiling Small Workloads

Agg()

Sel()

Agg(Q1) Agg(Q2) Agg(Q3) Agg(Q4) Agg(Q5)

Sel(Q1)

Sel(Q2)

Sel(Q3)
Sel(Q4)

Sel(Q5)

(AAL,AS)

atan(LSC)

This set of tests has been carried out on workloads containing 20
queries. The limited cardinality allows the optimization
algorithms to be applied without pre-reducing the number of
queries to be considered.

Table 1 shows workloads characterized by no selections and
different profiles for the indicators relative to materialization. It is
evident that the number of candidate views, and thus the
complexity of view materialization, mainly depends on the values
of ASK and is slightly more influenced by AAL. The simplest
workloads to be elaborated will be those with highly aggregated
queries with similar patterns, while the most complex will be
those with very different patterns with a low aggregation level.
The effect of a high skewness is more evident as soon as the
cardinality of the workloads is increased: those with a “nice”
profile still perform well, while the others quickly become too
complex. Figure 6 shows how the workloads perform with respect
to materialization: Figure 6.a indicates that, regardless of the
difficulty of the problems, workloads with high values of AAL are
strongly optimized even when a limited disk space is available for
storing materialized views. This behavior is induced by the
dimension, and thus by the number, of the materialized views that
fits the space constraint as can be verified in Figure 6.b.

0
1
2
3
4
5
6
7

1.1 1.4 1.6 1.9 2.1 2.4 2.6 2.9 3.1
Disk space constraint (GB)

H
un

dr
ed

s o
f m

ili
on

s D
P

0

5

10

15

20

1.1 1.4 1.6 1.9 2.1 2.4 2.6 2.9 3.1Disk space constraint (GB)

N
. o

f m
at

er
ia

liz
ed

 v
ie

w
s(a) (b)

WKL1 WKL2 WKL3 WKL4

Figure 6: Cost of the workloads (a) and number of materialized views (b) on varying the disk space constraint.

Table 1. Profiles of different 20/30-queries workloads with no selections. Unchanged parameters in gray.

Name N. of Queries AAL ASK AS LSC ACT N. Cand. views N. Mat. views (at 2GB)
WKL1 20 0.835 0.348 0 0 0 97 15
WKL2 20 0.186 0.327 0 0 0 124 2
WKL3 20 0.790 0.810 0 0 0 596 15
WKL4 20 0.384 0.751 0 0 0 868 2
WKL5 30 0.884 0.316 0 0 0 99 14
WKL6 30 0.352 0.668 0 0 0 >36158 uncompleted after 2 days

Table 2. Profiles of different 20-query workloads completed with selections. Unchanged parameters in gray.

Name AAL ASK AS LSC ACT View save Index save V-I space trade-off at 2.1 GB
WKL1a 0.835 0.348 0.04 0 2 96.7 % 2.1 % 59% - 41%
WKL1b 0.835 0.348 0.25 0 2 88.2 % 7.8 % 84% - 16%
WKL1c 0.835 0.348 0.5 0 2 88.9 % 4.9 % 84% - 16%
WKL4a 0.384 0.751 0.04 0 2 27.3 % 52.6 % 77% - 23%
WKL4b 0.384 0.751 0.25 0 2 28.1 % 48.0 % 68% - 32%
WKL4c 0.384 0.751 0.5 0 2 22.0 % 29.9 % 67% - 33%

Table 3. View & index save for workloads with different values of LSC and ACT. Unchanged parameters in gray.

Name AAL ASK AS LSC ACT View save Index save
WKL7a 0.542 0.607 0.349 0.8 1.0 61.8 % 14.7 %
WKL7b 0.542 0.607 0.366 -0.8 1.1 54.3 % 0.26 %
WKL7c 0.542 0.607 0.3 0.0 1.2 25.9 % 62.9 %
WKL7d 0.542 0.607 0.29 0.1 2.8 18.0 % 62.2 %

Let us now consider the indicators concerning selectivity and in
particular AS. Table 2 reports the profiles of the previous
workloads extended with select conditions: while LSC and ACT
remain constant, AS is varied ranging from 0.04 (very selective
workload) to 0.50 (not very selective workload);

The effects on the optimization effectiveness are measured
calculating in which percentage the initial workload cost is
reduced due to the effects of materialization (view save) and
indexing (index save). The values are obtained as the average of
different tests in which the space constraint is varied from 1.1 to
3.1 Gb. For each test the values considered are those relative to
the optimal trade-off between the space used for materialization
and indexing.

It is evident that in general materialization is more effective
than indexing that becomes relevant only when AS is very high
and the characteristics of the workload make it unsuitable for
materialization. Consider for example WKL1a and WKL4a: even
if they are both very selective only the second one greatly benefits
from indexing since for the first one the cost is already strongly
reduced by materialization. It should be noted that according to
the parameters, the percentage of the disk space that should be
devoted to indexing and materialization also varies. This
information is very important for the designers since
materialization and indexing are carried out in two separate steps
while the splitting up of the space must be done a priori: assigning
the wrong quantity of space to one of the two phases may induce
suboptimal performances and a waste of a very limited resource.
The last column in Table 2 shows how the percentages change
when 2Gb of disk space is available for the DW; the best trade-off

depends on both aggregation and selectivity features; in particular,
more space should be used for indexing when the profile shows
that the workload is not suitable for being optimized by
optimization and when selectivity is higher.

Finally, in Table 3 LSC and ACT are analyzed using a set of
workloads sharing the same characteristics in terms of aggregation
level, skewness and selectivity; while the AAL and ASK have
average values, AS is low in order to show up the results of the
analysis. As for LSC, the best optimization takes place when the
queries insisting on the finest views are strongly selective (LSC
positive) since they will be successfully optimized by indexing
while views will be used for unselective, but aggregate, queries.
On the other hand, workloads with few but very selective
conditions (low values of ACT) are well optimized using indexes
since few index and data pages must be read to apply the
conditions.

5.2 Profiling Large Workloads
Tests reported in this section are aimed at evaluating how
clustering impacts on the relationship between profiling and
optimization. Given that large workloads must be pre-reduced in
order to apply optimization algorithms, it is important to verify to
what extent such transformation impacts on their characteristics
and thus how effective optimization will be. In our test we
adopted the clustering algorithm proposed in [4] that is based on a
hierarchical approach that recursively agglomerates the two most
similar clusters that contain one single query at the beginning. The
representative of a cluster is a query whose pattern is the ancestor

Table 4. Effects of clustering on the optimization process

Name N. of Clusters # Cand. Views Total save View save Index save V-I space trade-off at 2.1 GB
20 2125 85.8 % 35.2 % 50.6 % 55 % - 45 %
15 499 85.5 % 33.9 % 51.6 % 55 % - 45 % WKL8
10 129 80.7 % 5.1 % 75.6 % 54 % - 46 %
20 4744 87.4 % 85.9 % 1.8 % 71 % - 29 %
15 2136 86.9 % 85.0 % 1.9 % 77 % - 23 % WKL9
10 384 84.6 % 81.6 % 3.0 % 61 % - 39 %

of the queries in the cluster and whose select condition is the
logical conjunction of the statements of the queries belonging to
the cluster. Table 4 reports the optimization results for two
workloads: WKL8 (AAL=0.378, ASK=0.738, AS=0.10,LSC=0.0,
ACT=1.8) and WKL9 (AAL=0.915, ASK=0.209, AS=0.75,
LSC=0.0, ACT=1.0) both containing 200 queries. As concerns
materialization, profile of WKL9 predicts that it is more willing to
be optimized using materialized views (i.e. AAL high and ASK
low), accordingly the view save is much stronger than that of
WKL8. On the other hand, WKL8 benefits much more by
indexing as we could infer from the selectivity indicators.
Accordingly to the previous results the percentage of space
devoted to view materialization is definitely higher for WKL9
than for WKL8. Finally, while the complexity of the problems
strongly depends on the number of clusters, the total optimization
reduction is slightly affected thus proving that the clustering
algorithm preserves original workload features.

Finally, while the complexity of the problems strongly
depends on the number of clusters, the total optimization
reduction is slightly affected thus proving that the clustering
algorithm preserves original workload features. Of course, the
distortions induced in the workload features become more evident
when the number of clusters is strongly reduced. For example
Table 2 shows that, as concerns materialization, WKL8 cannot be
effectively represented by 10 clusters; fortunately 10 clusters are
still enough to successfully carry out indexing.

6. CONCLUSIONS
In this paper we proposed the idea of profiling a DW workload in
order to summarize its characteristics. The profile can be used on
the one hand to help the designer during logical and physical
optimization since we have proved that it captures many relevant
features. On the other hand, we proposed an algorithm for
generating workloads starting from a given profile. This ability
can strongly reduce the time devoted to testing and can be very
useful in evaluating the performances in different situations. Our
future work will consist in making the qualitative information
obtained from the profile more “quantitative”; in particular we
will define a set of curves, parametric with respect to the
statistical indicators, to estimate how the workload will respond to
optimization as a function of variables like available disk space
and response time desired. Producing as output a curve will
strongly simplify the interpretation of the indicators that is made
difficult by their intrinsic interdependence: the curve will
condense in a unique and graphic representation all the
information carried by the set of indicators.

REFERENCES
[1] E. Baralis, S. Paraboschi and E. Teniente. Materialized view

selection in a multidimensional database. In Proc. 23rd
VLDB, Greece, 1997.

[2] A.F. Cardenas. Analysis and Performance of Inverted
Database Structures. Communications of the ACM,
18(5):253–263, 1975.

[3] A. Ghosh, J. Parikh, V.S. Sengar and J. R. Haritsa. Plan
Selection Based on Query Clustering, In Proc. 28th VLDB,
Hong Kong, China, 2002.

[4] M. Golfarelli. Handling large workloads by profiling and
clustering. To appear in Proc. 5th DaWaK 2003, Prague,
2003.

[5] M. Golfarelli, S. Rizzi and E. Saltarelli. Index selection for
data warehousing. In Proc. DMDW'2002, Toronto, Canada,
pp. 33-42, 2002.

[6] A. Gupta, V. Harinarayan and D. Quass. Aggregate-query
processing in data-warehousing environments. In Proc. 21st
VLDB, Switzerland, 1995.

[7] T. P. Nadeau and T. J. Teorey. Achieving scalability in
OLAP materialized view selection. In Proc. DOLAP’02,
Virginia USA, 2002.

[8] S. Rizzi and E. Saltarelli. View materialization vs. Indexing:
balancing space constraints in Data Warehouse Design. To
appear in Proc. CAISE’03, Austria, 2003.

[9] T. K. Sellis. Global query Optimization. In Proc. SIGMOD
Conference Washington D.C. 1986, pp. 191-205

[10] D. Theodoratos, M. Bouzeghoub. A General Framework for
the View Selection Problem for Data Warehouse Design and
Evolution. In Proc. DOLAP’00, Washington D.C. USA,
2000.

[11] Transaction Processing Performance Council. TPC
Benchmark H (Decision Support) Standard Specification,
Revision 1.1.0, 1998, http://www.tpc.org.

[12] J-R Wen, J-Y Nie and H-J Zhang. Query clustering using
user logs. ACM TOIS, Vol. 20, N. 1, Jan 2002, pp. 59-81.

