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Figure 1 shows the framework we assume for our approach: 

OLAP applications generate SQL queries whose logs are 
periodically elaborated for optimizing the system, but instead of 
directly using the workload extracted from the logs, a pre-
optimization phase is carried out in order to determine: 1) a set of 
statistical indicators that profiles the workload and determines its 
main features, 2) a clustered workload that is representative of the 
original one and can be handled by view materialization and 
indexing algorithms.  

ABSTRACT 
Real data warehouse workloads are often too large and complex to 
be directly optimized using the algorithms proposed in the 
literature for view materialization and indexing. In this paper we 
propose the idea of profile as an instrument for summarizing the 
workload features in order to help the designer to make the right 
choices. The ability of the profile to characterize a workload is 
then exploited to move backward using it as an input for an 
algorithm that generates a set of queries presenting the desired 
features. The algorithm proposed is finally used for creating the 
workloads necessary for testing the correspondence between 
different profiles and the results of optimization. 
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Figure 1: Overall framework for the optimization process 
1. INTRODUCTION 
During the design of a data warehouse (DW), the phases aimed at 
improving the system performance are mainly the logical and 
physical ones. A basic requirement for DW users is to obtain 
quick answers for their queries and the two main techniques to 
reach this goal are view materialization and indexing. Most of the 
approaches proposed in the literature rely on the existence of a 
reference workload that represents the target for the optimization 
[10]. Unfortunately, real workloads are much larger than those 
that can be handled by these techniques and thus view 
materialization and indexing remain tasks whose success depends 
on the experience of the designer that may find acceptable 
solutions by adopting rules of thumb and applying the trial-and-
error approach. 

In particular, the optimization process can be driven by the 
profile that shows the best choices to the designer. For example, 
knowing if the workload is more suitable for being optimized by 
using view materialization or indexing will make it possible to 
assign more disk space to one of the two techniques. 

In a previous work [4] we sketched, limitedly to the aspects 
related to view materialization, a set of statistical indicators that 
proved to be representative of the full workload and we defined a 
clustering algorithm capable of reducing the cardinality of the 
workload, maintaining at the same time the features of the original 
one. 

This paper, based on the previous results, presents a complete 
study on the concept of workload profile, proposing in particular 
two original contributions: first, the workload profile is completed 
considering the statistical indicators related to indexes and 
discussing how the whole profile should be interpreted in order to 
understand at best the workload characteristics. Our qualitative 
considerations are tested against the TPC-H/R benchmark [11] 
evaluating the relationship between the profile and the execution 
cost of different workloads. Furthermore, we move backwards and 
propose a workload generation algorithm that produces a GPSJ [6] 
workload that respects a given profile. The generated workload 
can be used for testing and benchmarking purposes. It is 
remarkable that, unlike other fields like pattern recognition and 
operational research, this is the first attempt in the database field 
to define large and ad-hoc workloads for benchmarking (even 
well-known benchmarks like TPC-H/R are supplied with a limited 
and fixed set of queries). The ability to easily create large 

The gap between academic approaches and real systems could 
be filled by techniques capable of determining on the one hand, 
the workload characteristics and maintaining, on the other, a 
reduced computational complexity. 
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workloads with specific features can strongly reduce the time 
devoted to testing and can be very useful in evaluating the 
performances in different situations (e.g. fine or coarse 
aggregation, selective or unselective queries). 

To the best of our knowledge no study, except the preliminary 
result proposed in [4], focused specifically on defining a profile 
for understanding the workload; nevertheless the idea of 
identifying common characteristics to improve the system 
performance have been largely used. In particular, clustering 
techniques have been proposed for defining groups of similar 
queries: in [3] the authors used clustering to reduce the 
complexity of the plan selection task. The concept of similarity is 
based on a complex set of features that it is necessary to encode 
when different queries can be efficiently solved using the same 
execution plan. This idea has been implicitly used in several 
previous works where a global optimization plan was obtained 
given a set of queries [9]. Another field where query similarity 
and clustering are often used is Information Retrieval since search 
engines need to cluster similar queries to identify FAQ and to 
better organize hierarchies of documents [12]. 

The rest of the paper is organized as follows: Section 2 
presents the necessary background, Section 3 defines the 
statistical indicators for workload profiling; Section 4 presents the 
algorithm for generating the workload, while in Section 5 a set of 
experiments, aimed at proving the profile effectiveness, are 
reported. Finally, in Section 6 the conclusions are drawn. 

2. BACKGROUND 
It is recognized that DWs lean on the multidimensional model to 
represent data, meaning that indicators that measure a fact of 
interest are organized according to a set of dimensions of analysis; 
for example, sales can be measured by the quantity sold 
and the price of each sale of a given product that took place in a 
given store and on a given day. Each dimension is usually related 
to a set of attributes describing it at different aggregation levels; 
the attributes are organized in a hierarchy defined according to a 
set of functional dependencies. For example a product can be 
characterized by the attributes PName, Type, Category and 
Brand among which the following functional dependencies are 
defined: PName→Type, Type→Category and 
PName→Brand; on the other hand, stores can be described by 
their geographical and commercial location: SName→City, 
City→Country, SName→CommmercialArea, 
CommercialArea→CommercialZone. 

In relational solutions, the multidimensional nature of data is 
implemented on the logical model by adopting the so-called star 
scheme, made up of a set of (fully denormalized) dimension 
tables, one for each dimension of analysis, and a fact table whose 
primary key is obtained by composing the foreign keys 
referencing the dimension tables. The most common class of 
queries used to extract information from a star schema are GPSJ 
[6] that consist of a selection, over a generalized projection over a 
selection over a join between the fact table and the dimension 
table involved. Within the scope of this paper we will assume that 
selections are always conjunctive range statements expressed on 
attributes in the dimension tables. 

It is easy to understand that grouping heavily contributes to 
the global query cost and that such a cost can be reduced by 
precomputing (materializing) that aggregated information that is 
useful to answer a given workload. Unfortunately, in real 
applications, the size of such views never fits the constraint  given 

by the available disk space and it is very hard to choose the best 
subset to be actually materialized. When working on a single fact 
scheme and assuming that all the measures contained in the 
elemental fact table are replicated a view is completely defined by 
its aggregation level.  

Definition 1 The pattern of a view consists of a set of dimension 
table attributes such that no functional dependency exists between 
attributes in the same pattern.  

Possible patterns for the sales fact are: P1 = {Month, 
Country, Category}, P2 = {Year, Sname}, P3 = 
{Brand}. In the following we will use indifferently the terms 
pattern and view and we will refer to the query pattern as the 
coarsest pattern that can be used to answer the query. 

Definition 2 Given two views Vi, Vj with patterns Pi, Pj 
respectively, we say that Vi can be derived from Vj (Vi ≤ Vj) if the 
data in Vi can be calculated from the data in Vj. 

Derivability determines a partial-order relationship between the 
views, and thus between patterns, of a fact scheme. Such partial-
order can be represented by the so-called multidimensional lattice 
[1] whose nodes are the patterns and whose arcs show a direct 
derivability relationship between patterns. The multidimensional 
lattice is often used to efficiently store the information relevant to 
the materialization process but also provides an intuitive 
representation of the distribution of the queries with respect to 
their aggregation level. 

Definition 3. We denote with Pi ⊕ Pj the least upper bound 
(ancestor) of two patterns in the multidimensional lattice. 

Intuitively the ancestor of two patterns corresponds to the coarsest 
one from which both can be derived. Given a set of queries the 
ancestor operator can be used to determine the set of views that 
are potentially useful to reduce the workload cost (candidate 
views). The candidate set can be obtained, starting from the 
workload queries, by iteratively adding to the set the ancestors of 
each couple of patterns until a fixed point is reached.  

As for indexing, the index types considered are B+-tree and 
bitmap; we will assume that a B+-tree index is always built on the 
key of each table present in the DW, additional indexes can be 
built on single attributes belonging to the key of a fact table (to 
speed up join) and on attributes in the dimension tables (to speed 
up selections). 

The cost model we adopted for evaluating the workload cost is 
the one proposed in [8]: the execution plan is obtained by making 
up a set of base operators corresponding to the base operations 
(e.g. access a table, access to an index, execute a join, etc.) whose 
cost is expressed in terms of disk pages accessed to retrieve the 
data. The set of rules used by the authors to determine the best 
plan has been extended by relaxing the constraint of using an 
existing index, regardless of the negative impact it could have on 
the query cost. Evaluating, each time, the usefulness of an index 
makes the optimizer model more realistic.  

3. PROFILING THE WORKLOAD 
Profiling means determining the values of a set of statistical 
indicators that captures the workload features that have an impact 
on the effectiveness of different optimization techniques. In 



particular, we are interested in those relevant to the problem of 
view materialization and indexing that help the designer to answer 
queries like: 

• “How suitable is the workload for materialization/indexing  ?” 
• “How difficult will it be to find the best set of views to be 

materialized ?” 
• “In percentage, how much disk space should be allocated to 

indexes or views?” 

Given a set of queries W ={Q1,…,Qn}, a profile RW is a quintuple 
(AAL, ASK, AS, LSC, ACT), the first two indicators analyze the 
behavior of the workload W with respect to aggregation, while the 
last three summarize its characteristics in terms of selection 
criteria. In the rest of the paper we will refer to RW[i] as the i-th 
indicator in the profile. We now present each indicator separately 
discussing how its values should be interpreted individually and 
with respect to the other ones. 

3.1 Indicators on Aggregation Level 
AAL and ASK are based on the concept of cardinality of the views 
associated to a given pattern that can be estimated knowing the 
data volume of the fact scheme that we assume to contain the 
cardinality of the base fact table and the number of distinct values 
of each attribute in the dimension tables.  

The cardinality of an aggregate view can be estimated using 
Cardenas’ formula [2] which states that, when throwing N distinct 
objects into B buckets, the expected number of buckets in which 
at least one object will fall can be estimated as: 
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In our case the objects are the tuples in the elemental fact table 
with pattern P0 (whose number |P0| is assumed to be known) 
while the number of buckets is the maximum number of tuples, 
|P|Max, that can be stored in a view with pattern P and that can be 
easily calculated given the cardinalities of the attributes belonging 
to the pattern, thus 

Card(P)= Φ(|P|Max ,|P0|) 

The aggregation level of a pattern P is calculated as: 
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Agg(P) ranges between [0,1[, the higher the values the coarser the 
pattern. The average aggregation level of the full workload W 
={Q1,…Qn} can be calculated as  
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where Pi is the pattern of query Qi. AAL characterizes to what 
extent the information required by the users is aggregated and 
expresses the willingness of the workload to be optimized using 
materialized views. Intuitively, workloads with high values of 
AAL will be efficiently optimized using materialized views since 
they determine a strong reduction of the number of tuples to be 
read. Furthermore, the limited size of such tables allows a higher 
number of views to be materialized. 

Measuring the aggregation level is not sufficient to 
characterize the workload; in fact workloads with similar values 

of AAL can behave differently, with respect to materialization, 
depending on the attributes involved in the queries. Consider for 
example two workloads W1 ={Q1, Q2} and W2 ={Q3, Q4} 
formulated on the sales fact scheme and the pattern of their 
queries:  

• P1 = {Category, City} Card(P1) = 2100 
• P2 = {Type, Country} Card(P2) = 1450 
• P3 = {Category, Country}  Card(P3) = 380 
• P4 = {Brand, CommercialZone} Card(P4) = 680 

Materializing a single view to answer both the queries in the 
workload is much more useful for W1, than for W2 since in the 
first case the ancestor is very “close” to the queries (P1⊕ 
P2={Type, City}) and still coarse, while in the second case it is 
“far” and fine (P3⊕ P4={SName, PName}). This difference is 
captured by the distance between the two patterns that we 
calculate as: 

Dist(Pi, Pj) = Agg(Pi) + Agg(Pj) - 2 Agg(Pi ⊕ Pj) 

Dist(Pi, Pj) is calculated in terms of distance of Pi and Pj from 
their ancestor that is the point of the multidimensional lattice 
closest to both the views. Figure 2 shows two different situations 
on the same multidimensional lattice: even if the aggregation level 
of the patterns is similar, the distance between each couple 
changes considerably. 
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Figure 2: Distance between close and far patterns 

The average skewness of the full workload W ={Q1,…Qn} can be 
calculated as  
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where Pz is the pattern of query Qz; ASK ranges in [0,2[1 . 
Intuitively, workloads with low values for ASK will be efficiently 
optimized using materialized views since the similarity of the 
query patterns makes it possible to materialize few views to 
optimize several queries. 

                                                 
1 The maximum value for ASK depends on the cardinalities of 

the attributes and on the functional dependencies defined on the 
hierarchies, thus it cannot be defined without considering the 
specific star schema.  



3.2 Indicators for Selectivity 
In order to characterize a workload in terms of its selectivity we 
propose three indicators that have proved to be representatives of 
the factors that influence the execution cost. The analysis of the 
selectivity indicators is harder since the evaluation of their values 
must be based on the values of those of the aggregation ones. 

The main indicator is the average selectivity that is calculated 
as 
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where the selectivity of each query is defined as 

where m∏ =
= im

j jii QselQsel 1 , )()( i is the number of conditions 

for Qi and sel(Qi,j) is the selectivity of the j-th statement (i.e. 
percentage of the attribute values selected by the statement); AS 
ranges in [0,1]. Intuitively, workloads with lower values of AS 
will require a stronger use of indexes; on the other hand, 
selectivity itself is not sufficient to characterize the impact of 
indexing with respect to materialization since it depends on 
“where” and “how” the statements are formulated.  In fact, if the 
statements are formulated on strongly aggregated data the effect 
of  materialization could be stronger, regardless of the level of 
selectivity. To emphasize this effect a second operator to be 
considered is the coefficient of the least-square line (LSC) defined 
on the aggregation-selectivity plan by the set of points, one for 
each query Qi, having as x-values Agg(Qi) and as y-values Sel(Qi) 
(see Figure 3). When LSC is near to zero selectivity is equally 
distributed at the different aggregation levels, while when LSC is 
positive/negative selectivity is stronger for queries with 
lower/higher aggregation level. Compatibly with the values of AS, 
workloads with positive values of LSC will be more inclined to be 
optimized using indexes with respect to those with negative values 
since the effect of selections concerns tables with higher 
cardinalities.  
 

 

 

 

Figure 3: The mean-square error line for the aggregation-
selectivity plan 

Finally, a third criteria affecting the usefulness of indexes is the 
average number of constrained tables: 
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In fact, given a selectivity value AS, workloads with higher values 
of ACT will require a higher number of indexes to apply all the 
conditions profitably. It should be noted that, even if all the 
indexes required are available, indexing will be less effective with 
respect to the case with low values for ACT. In fact, for a fixed 

AS, a high value of ACT implies unselective conditions that 
require more data to be read.  

4. GENERATING THE WORKLOAD 
Generating a GPSJ workload W over a fact scheme F means 
choosing the set of feasible queries over F such that RW does not 
differ more than ∆R from a target profile Ropt given as input 
together with the desired cardinality |W|. As shown in Figure 4, 
generation is a two-step process: initially the set of aggregation 
patterns P respecting the target profile are searched in the 
multidimensional lattice space, then selectivity criteria are 
applied. It should be noted that the workload definition process 
does not consider measures assuming that they are always 
requested together; this assumption is justified since optimizations 
based on vertical fragmentation of fact tables are rarely 
considered. 
 

 

 

 

 

 

 

Figure 4: The workloa
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words, it is not at all possible to find |W | queries with profiles 
Ropt. 

4.2 Generation of Selection Criteria 
Given the set of aggregation pattern P for the queries in the 
workload the selectivity sel(Qi) of each query can be set on the 
aggregation-selectivity plan by projecting on the ordinate axes the 
values of Agg(Qi) by means of the line passing through (AS, AAL) 
and having LSC as an angular coefficient (see Figure 5). In fact, it 
is possible to prove that the points of the line having x-coordinate 
Agg(Qi) will have as y-coordinate the selectivity values that 
determine the correct AS in the target profile.  

The single selectivity statements are then defined according to 
the values of ACT  and compatibly with the cardinalities of 
attributes in the aggregation patterns. In fact, since it is not always 
possible to assign the theoretical selectivity (e.g. a selectivity of 
10% on an attribute with 4 distinct values) a compensation 
algorithm is required. Compensation increases/decreases the 
selectivity of the other statements in order to bring AS back to the 
input value. The algorithm is first applied on the other selections 
of the same query and then on the statements of the other ones. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: The line used to infer the selectivity of the queries 
given their aggregation levels. 

5. TESTS AND DISCUSSION 
In this section we propose a set of tests aimed at proving the 
effectiveness of profiling and we discuss how the indicators 
should be interpreted as a whole, that is, considering also how the 
meaning of one of them is influenced by the values of the others. 
Test have been carried out on the TPC-H/R benchmark [11] and in 

particular on the LINEITEM fact scheme; as already said the cost 
function is the one proposed in [8] that quantifies the workload 
cost in the number of disk pages accessed to answer the query. 
The fact schema data requires 1.1 Gb considering also the space 
used for indexing the primary keys of the tables. 

Effectiveness of profiling is measured indirectly analyzing 
how workloads with different profiles respond to optimizations 
like view materialization and indexing. View materialization is 
carried out using the classic approach proposed by Baralis et 
al.[1]: the algorithm first determines the set of candidate views 
and then heuristically chooses the best subset that fits given space 
constraints. Splitting the process into two phases allows us to 
estimate both the difficulty of the problem, that we measure in 
terms of the number of candidate views, and the effectiveness of 
materialization that is calculated in terms of the number of disk 
pages saved by materialization. As for indexing we used the 
heuristic approach proposed in [5] that, given a set of materialized 
views, determines the set of useful indexes (and their types) first, 
then chooses the optimal subset based on the saving per disk page 
determined by each index. 

5.1 Profiling Small Workloads 
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Sel(Q1) 

Sel(Q2) 

Sel(Q3) 
Sel(Q4) 

Sel(Q5) 

(AAL,AS) 

atan(LSC)

This set of tests has been carried out on workloads containing 20 
queries. The limited cardinality allows the optimization 
algorithms to be applied without pre-reducing the number of 
queries to be considered.  

Table 1 shows workloads characterized by no selections and 
different profiles for the indicators relative to materialization. It is 
evident that the number of candidate views, and thus the 
complexity of view materialization, mainly depends on the values 
of ASK and is slightly more influenced by AAL. The simplest 
workloads to be elaborated will be those with highly aggregated 
queries with similar patterns, while the most complex will be 
those with very different patterns with a low aggregation level. 
The effect of a high skewness is more evident as soon as the 
cardinality of the workloads is increased: those with a “nice” 
profile still perform well, while the others quickly become too 
complex. Figure 6 shows how the workloads perform with respect 
to materialization: Figure 6.a indicates that, regardless of the 
difficulty of the problems, workloads with high values of  AAL are 
strongly optimized even when a limited disk space is available for 
storing materialized views. This behavior is induced by the 
dimension, and thus by the number, of the materialized views that 
fits the space constraint as can be verified in Figure 6.b. 
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Figure 6: Cost of the workloads (a) and number of materialized views (b) on varying the disk space constraint. 

 

 



Table 1. Profiles of different 20/30-queries workloads with no selections. Unchanged parameters in gray. 

Name N. of Queries AAL ASK AS LSC ACT N. Cand. views N. Mat. views (at 2GB) 
WKL1 20 0.835 0.348 0 0 0 97 15 
WKL2 20 0.186 0.327 0 0 0 124 2 
WKL3 20 0.790 0.810 0 0 0 596 15 
WKL4 20 0.384 0.751 0 0 0 868 2 
WKL5 30 0.884 0.316 0 0 0 99 14 
WKL6 30 0.352 0.668 0 0 0 >36158 uncompleted after 2 days 

 

Table 2. Profiles of different 20-query workloads completed with selections. Unchanged parameters in gray. 

Name AAL ASK AS LSC ACT View save Index save V-I space trade-off at 2.1 GB 
WKL1a 0.835 0.348 0.04 0 2 96.7 % 2.1 % 59% - 41% 
WKL1b 0.835 0.348 0.25 0 2 88.2 % 7.8 % 84% - 16% 
WKL1c 0.835 0.348 0.5 0 2 88.9 % 4.9 % 84% - 16% 
WKL4a 0.384 0.751 0.04 0 2 27.3 % 52.6 % 77% - 23% 
WKL4b 0.384 0.751 0.25 0 2 28.1 % 48.0 % 68% - 32% 
WKL4c 0.384 0.751 0.5 0 2 22.0 % 29.9 % 67% - 33% 

Table 3. View & index save for workloads with different values of LSC and ACT. Unchanged parameters in gray. 

Name AAL ASK AS LSC ACT View save Index save 
WKL7a 0.542 0.607 0.349 0.8 1.0 61.8 % 14.7 % 
WKL7b 0.542 0.607 0.366 -0.8 1.1 54.3 % 0.26 % 
WKL7c 0.542 0.607 0.3 0.0 1.2 25.9 % 62.9 % 
WKL7d 0.542 0.607 0.29 0.1 2.8 18.0 % 62.2 % 

 
 
Let us now consider the indicators concerning selectivity and in 
particular AS. Table 2 reports the profiles of the previous 
workloads extended with select conditions: while LSC and ACT 
remain constant, AS is varied ranging from 0.04 (very selective 
workload) to 0.50 (not very selective workload);  

The effects on the optimization effectiveness are measured 
calculating in which percentage the initial workload cost is 
reduced due to the effects of materialization (view save) and 
indexing (index save). The values are obtained as the average of 
different tests in which the space constraint is varied from 1.1 to 
3.1 Gb. For each test the values considered are those relative to 
the optimal trade-off between the space used for materialization 
and indexing. 

It is evident that in general materialization is more effective 
than indexing that becomes relevant only when AS is very high 
and the characteristics of the workload make it unsuitable for 
materialization. Consider for example WKL1a and WKL4a: even 
if they are both very selective only the second one greatly benefits 
from indexing since for the first one the cost is already strongly 
reduced by materialization. It should be noted that according to 
the parameters, the percentage of the disk space that should be 
devoted to indexing and materialization also varies. This 
information is very important for the designers since 
materialization and indexing are carried out in two separate steps 
while the splitting up of the space must be done a priori: assigning 
the wrong quantity of space to one of the two phases may induce 
suboptimal performances and a waste of a very limited resource. 
The last column in Table 2 shows how the percentages change 
when 2Gb of disk space is available for the DW; the best trade-off 

depends on both aggregation and selectivity features; in particular, 
more space should be used for indexing when the profile shows 
that the workload is not suitable for being optimized by 
optimization and when selectivity is higher.  

Finally, in Table 3 LSC and ACT are analyzed using a set of 
workloads sharing the same characteristics in terms of aggregation 
level, skewness and selectivity; while the AAL and ASK have 
average values, AS is low in order to show up the results of the 
analysis. As for LSC, the best optimization takes place when the 
queries insisting on the finest views are strongly selective (LSC 
positive) since they will be successfully optimized by indexing 
while views will be used for unselective, but aggregate, queries. 
On the other hand, workloads with few but very selective 
conditions (low values of ACT) are well optimized using indexes 
since few index and data pages must be read to apply the 
conditions. 

5.2 Profiling Large Workloads 
Tests reported in this section are aimed at evaluating how 
clustering impacts on the relationship between profiling and 
optimization. Given that large workloads must be pre-reduced in 
order to apply optimization algorithms, it is important to verify to 
what extent such transformation impacts on their characteristics 
and thus how effective optimization will be. In our test we 
adopted the clustering algorithm proposed in [4] that is based on a 
hierarchical approach that recursively agglomerates the two most 
similar clusters that contain one single query at the beginning. The 
representative of a cluster is a query whose pattern is the ancestor  
 

 

 



Table 4. Effects of clustering on the optimization process 

Name N. of Clusters # Cand. Views Total save View save Index save V-I space trade-off at 2.1 GB
20 2125 85.8 % 35.2 % 50.6 % 55 % - 45 % 
15 499 85.5 % 33.9 % 51.6 % 55 % - 45 % WKL8 
10 129 80.7 % 5.1 % 75.6 % 54 % - 46 % 
20 4744 87.4 % 85.9 % 1.8 % 71 % - 29 % 
15 2136 86.9 % 85.0 % 1.9 % 77 % - 23 % WKL9 
10 384 84.6 % 81.6 % 3.0 % 61 % - 39 % 

 
of the queries in the cluster and whose select condition is the 
logical conjunction of the statements of the queries belonging to 
the cluster. Table 4 reports the optimization results for two  
workloads: WKL8 (AAL=0.378, ASK=0.738, AS=0.10,LSC=0.0, 
ACT=1.8) and WKL9 (AAL=0.915, ASK=0.209, AS=0.75, 
LSC=0.0, ACT=1.0) both containing 200 queries. As concerns 
materialization, profile of WKL9 predicts that it is more willing to 
be optimized using materialized views (i.e. AAL high and ASK 
low), accordingly the view save is much stronger than that of 
WKL8. On the other hand, WKL8 benefits much more by 
indexing as we could infer from the selectivity indicators. 
Accordingly to the previous results the percentage of space 
devoted to view materialization is definitely higher for WKL9 
than for WKL8. Finally, while the complexity of the problems 
strongly depends on the number of clusters, the total optimization 
reduction is slightly affected thus proving that the clustering 
algorithm preserves original workload features. 

Finally, while the complexity of the problems strongly 
depends on the number of clusters, the total optimization 
reduction is slightly affected thus proving that the clustering 
algorithm preserves original workload features. Of course, the 
distortions induced in the workload features become more evident 
when the number of clusters is strongly reduced. For example 
Table 2 shows that, as concerns materialization, WKL8 cannot be 
effectively represented by 10 clusters; fortunately 10 clusters are 
still enough to successfully carry out indexing. 
 

6. CONCLUSIONS 
In this paper we proposed the idea of profiling a DW workload in 
order to summarize its characteristics. The profile can be used on 
the one hand to help the designer during logical and physical 
optimization since we have proved that it captures many relevant 
features. On the other hand, we proposed an algorithm for 
generating workloads starting from a given profile. This ability 
can strongly reduce the time devoted to testing and can be very 
useful in evaluating the performances in different situations. Our 
future work will consist in making the qualitative information 
obtained from the profile more “quantitative”; in particular we 
will define a set of curves, parametric with respect to the 
statistical indicators, to estimate how the workload will respond to 
optimization as a function of variables like available disk space 
and response time desired. Producing as output a curve will 
strongly simplify the interpretation of the indicators that is made 
difficult by their intrinsic interdependence: the curve will 
condense in a unique and graphic representation all the 
information carried by the set of indicators. 
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