
Materialization of Fragmented Views in

Multidimensional Databases ?

Matteo Golfarelli a;�, Vittorio Maniezzo b, Stefano Rizzi a

aDEIS, University of Bologna, Viale Risorgimento 2, 40136 Bologna - Italy

bComputer Science Dept., University of Bologna, Mura Anteo Zamboni, 7, 40127

Bologna - Italy

Abstract

A multidimensional database can be seen as a collection of multidimensional cubes
centered on facts of interest. In the context of multidimensional databases imple-
mented on relational DBMSs, the most e�ective technique to enhance performances
consists in materializing redundant aggregates called views. In the classical ap-
proach to materialization, each view includes all and only the measures of the cube
it aggregates. In this paper we investigate the bene�ts of materializing views in
vertical fragments, each possibly including measures from di�erent cubes, aimed
at minimizing the workload response time. In fact, the measures of a single cube
are not necessarily always requested together in queries; on the other hand, drill-
across queries involve measures taken from two or more cubes. We formalize the
fragmentation problem as a 0-1 integer linear programming problem, which is then
solved by means of a standard integer programming solver to determine the opti-
mal fragmentation for a given workload. Finally, we demonstrate the usefulness of
fragmentation by presenting a large set of experimental results based on the TPC-H
benchmark.

Key words: Data warehousing, Logical design, View materialization

? This research was partially supported by MURST - Interdata Project.
� Corresponding author. Tel.: +39-0547-642862; fax: +39-0547-610054
Email addresses: mgolfarelli@deis.unibo.it (Matteo Golfarelli),

maniezzo@csr.unibo.it (Vittorio Maniezzo), srizzi@deis.unibo.it (Stefano
Rizzi).

Preprint submitted to Elsevier Science 27 September 2002

Fig. 1. A sample cube for the line items in an order.

1 Introduction

Recently, multidimensional databases have gathered wide research and market
interest as the core of decision support applications such as data warehouses.
A multidimensional database (MD) can be seen as a collection of multidi-
mensional cubes centered on facts of interest (for instance, the line items in
the orders issued by a company). A cube is composed by cells which con-
tain a set of numericalmeasures conveying useful information for the decision
process (for instance, the price and the quantity of a line item). The cube di-
mensions are attributes which represents possible dimensions for analysis (for
instance, products, suppliers and orders) [12]. From the logical point of view,
the set of dimensions functionally determines every measure (see Figure 1).
Furthermore, each dimension may be associated to a hierarchy of attributes
which describe it (for instance, the city and the nation of a supplier).

An MD implemented on a relational DBMS is usually organized according
to the so-called star scheme [14], in which each cube is represented by one
fact table storing the measures and one denormalized dimension table for each
dimension of analysis. The primary key of the fact table is a set of foreign
keys, each referencing the (usually surrogate) key of a dimension table. Besides
the key, each dimension table contains all the attributes which describe the
corresponding dimension.

In MDs, the response to the workload is improved by materializing a set of
views which store the pre-computed results to frequent/critical queries, thus
introducing some degree of data redundancy. Since the basic mechanism to
extract useful information from elemental data in MDs is aggregation, a view
on a cube is typically de�ned by a SQL query which groups data by a set of
attributes taken from dimension tables (grouping set, for instance including
order date and part type) and computes summarized values for measures by
means of some aggregation operators (see Figure 2). Even views are organized
into star schemes. In the following, with a slight abuse in terminology, we

2

Fig. 2. Two views on the line item cube.

will call views all the star schemes for a cube: the one storing elemental data
(primary view) and those containing aggregated values (secondary views).

Since pre-computing and storing all the possible secondary views is infeasible,
several techniques have been proposed to select the subset to materialize in
order to optimize the response to the workload (e.g, [1,13,27,24]). In these
approaches, the views to be materialized on a cube include all its measures,
without considering which measures are required together by the queries in the
workload; hence, we will globally refer to them as all-or-nothing approaches.

In this paper we investigate how the response to the workload can be enhanced
by materializing views in vertical fragments, each including only a subset of
measures. The most evident motivations for applying vertical fragmentation
techniques to views in MDs can be stated as follows:

� As compared to operational databases, in MDs the bene�ts of fragmenta-
tion are further enhanced by the multiple query execution plans due to the
presence of redundant secondary views. These bene�ts are particularly rel-
evant if the MD is implemented on a parallel architecture; if disk arrays
are adopted and fragmentation is coupled with an allocation algorithm, the
queries requiring multiple fragments allocated on di�erent disks can be ef-
fectively parallelized [17,19].

� While every measure of each cube must be stored in its elemental form
to avoid loss of information, the same is not true for aggregated values.
Thus, depending on the workload, some measures may be not materialized
at all in aggregated fragments, leading to space saving as compared to all-

3

or-nothing materialization. When a space constraint is posed, this saving
can be pro�tably employed to store other useful fragments.

� Partitioning a view in two or more fragments entails no signi�cant storage
overhead: in fact, on the one hand, surrogate keys require few bytes to be
stored; on the other, though on primary views the number of dimensions
may exceed the number of measures, this is less likely on secondary views
for two reasons: �rstly, they may also include derived measures and support
measures for non-distributive aggregation operators [6,9]; secondly, within
a coarse grouping set, one or more dimensions may be completely grouped
(in this case, the corresponding foreign key is dropped from the key of the
view).

Vertical fragmentation for MDs has already been proposed in the literature
[4,5,17]; in this paper we give the following new contributions:

� Optimality. In the other approaches, no suggestions on how to determine a
good fragmentation were given. In this paper, the fragmentation problem is
formalized as a 0-1 integer programming (IP) problem, which is then solved
by means of a standard IP solver. Given a core workload, a constraint on
the global disk space for materialization and a function to estimate the cost
for executing each query on each fragment, an optimal fragmentation is thus
produced.

� Generality. Instead of �rst determining the optimal set of views and then
fragmenting them, we propose to directly determine the optimal fragments
to be materialized from the workload. This one-step approach avoids losing
in overall optimality by allocating useless fragments. Besides, our approach
completely subsumes the all-or-nothing approach: in fact, if all the queries
in the workload require all and only the measures of a single cube, only
unfragmented views are determined.

� Drill-across. In our approach, each fragment includes measures taken from
one or more cubes, aggregated on the same grouping set. Thus, as com-
pared to all-or-nothing materialization, fragmentation may achieve the goal
of unifying two or more cubes into a single fragment besides that of par-
titioning a cube into two or more fragments. While partitioning may be
useful whenever only a subset of the attributes is typically required by each
query, uni�cation may be convenient when the workload is signi�cantly af-
fected by drill-across queries, i.e. queries formulated on measures belonging
to di�erent cubes.

� Testing. The results of a large set of experimental results is reported in the
paper in order to quantify and discuss the bene�ts of fragmentation from
di�erent points of view.

The paper is structured as follows. In Section 2 we introduce the basic de�-
nitions and notations for the paper. In Section 3 the fragmentation problem
is motivated and formalized as a 0-1 IP problem. Section 4 presents a large

4

set of experimental results based on the TPC-H benchmark. In Section 5 the
related work is surveyed, while Section 6 draws the conclusions. Appendix A
describes the cost function used for optimization.

2 Background

This section introduces some necessary background knowledge for the paper.
In particular, Section 2.1 introduces the basics on cube schemes, Section 2.2
discusses the assumptions made on the workload for the MD, and Section 2.3
identi�es the candidate views for materialization.

2.1 Cubes

De�nition 1 (Cube Scheme) A cube scheme C is de�ned by a set of di-
mensions, Gby(C), and a set of measures, Meas(C). If n is the number of
dimensions in C, we will say C is n-dimensional.

Typically, each dimension is associated with a set of attributes which describe
it; these attributes are organized into a directed tree, called hierarchy, whose
root is the dimension and whose arcs represent functional dependencies. A
cube instance of a cube scheme is a partial function which maps from the
Cartesian product of the domains of dimensions to the Cartesian product of
the domains of measures.

De�nition 2 (Multidimensional Scheme) A multidimensional scheme D
is a set of cube schemes.

Example 1 The multidimensional scheme we will use as a working example
derives from the TPC-H [20]; it includes two cube schemes, LineItem (LI) and
PartSupplier (PS), which respectively describe the composition of the orders
issued from a company and the company supplies:

Gby(LI) = fPart, Supplier, Order, ShipDate, ShipMode, ReturnFlag, Status,

CommitDate, ReceiptDateg

Meas(LI) = fUnitPrice, Qty, ExtPrice, Discount, DiscPrice, Charge, Taxg

Gby(PS) = fPart, Supplier, Dateg

Meas(PS) = fAvailQty, SupplyCostg

LI and PS are characterized by the hierarchies represented graphically in Fig-
ure 3 where, for instance, Supplier! SNation and SNation ! SRegion. On re-

5

CRegion

CNation
OQuarter

MFGR

Part

Brand

SRegionSNation

Order

OMonth

ODate

Supplier

Type

Customer

Container

Size MktSegment

OYear

ShipPriorityOStatus

Clerk OPriority

Quarter

Month

Date

Year

Fig. 3. Hierarchies in the LI and PS schemes (in gray the dimensions).

lational DBMSs, cube schemes are usually implemented through a star scheme
[14]. The star scheme for LI is:

PART(Part, Brand, MFGR, Type, Container, Size)
SUPPLIER(Supplier, SNation, SRegion)
ORDER(Order, ODate, OMonth, OQuarter, OYear, OWeek, Customer,

CNation, CRegion, MktSegment, OPriority, OStatus, ShipPriority, Clerk)
LINEITEM(Part, Supplier, Order, ShipDate, ShipMode,

ReturnFlag,ReceiptDate, CommitDate, Status,
UnitPrice, Qty, ExtPrice, Discount, DiscPrice, Charge, Tax)

where LINEITEM is the fact table and the others are dimension tables. 1
2

2.2 The workload

In principle, the workload for an MD is dynamic and unpredictable. Never-
theless, in agreement with several research papers (for instance [9,27]), we
claim that a core workload can be determined a priori. In fact, on the one
hand, the user typically knows in advance which kind of data analysis (s)he
will carry out more often for decisional or statistical purposes; on the other,
a substantial amount of queries are aimed at extracting summary data to �ll
standard reports. Furthermore, some commercial tools enable the workload
to be monitored while the MD is operating: in this case, fragmentation could
be carried out periodically considering the current workload in order to tune
performances at best.

In the following we will consider the GPSJ class of queries, very common
in OLAP applications. A GPSJ (Generalized Projection / Selection / Join)
query is a selection over a generalized projection over a selection over a join,

1 In the working example we will assume for simplicity that the primary key of each
dimension table is a dimension. In practice, surrogate keys are typically introduced
instead.

6

where the generalized projection operator is an extension of duplicate elimi-
nating projection which captures grouping and aggregation [11]. In a GPSJ
query within the OLAP context, the join is the star join that relates the fact
table and the dimension tables; the selection may be applied to both mea-
sures (non-key attributes of the fact table) and attributes (non-key attributes
of dimension tables); the generalized projection groups the tuples on a set of
attributes (grouping set) and determines which aggregated measures are re-
turned. Given query q, we will denote with Gby(q), Meas(q), Sel(q) 2 [0::1],
and Freq(q), respectively, the grouping set of q, the measures it returns, its
selectivity, and its frequency within the workload.

Example 2 On LI, the query asking for the total quantity of each medium
polished part ordered from American suppliers is characterized by Gby(q) =
fSRegion, Partg, Meas(q) = fQtyg and Sel(q) = 0:01 (assuming that 5 sup-
plier regions and 20 part types are present, that attribute values are uniformly
distributed and that selection predicates are independent, it is Sel(q) = 1

5
� 1
20
).

Its SQL formulation on the star scheme de�ned in Example 1 is:

SELECT S.SRegion, P.Part, SUM(LI.Qty)
FROM LINEITEM AS LI, PART AS P, SUPPLIER AS S
WHERE LI.Part = P.Part
AND LI.Supplier = S.Supplier
AND P.Type = `Medium Polished'
AND S.SRegion = `USA'
GROUP BY S.SRegion, P.Part

2

Given a cube scheme C, let GC denote the set of the grouping sets of all the
possible queries on C. As observed in [1], the functional dependencies which
relate the attributes of hierarchies in C induce a partial ordering, called roll-
up (�), on GC: given two grouping sets gi and gj , it is gi�gj i� gj ! gi (gj
functionally determines gi). The roll-up ordering identi�es a lattice in which
the top element is Gby(C) (the �nest grouping set) and the bottom element is
the empty grouping set, ; (the coarsest possible one). While Gby(C) will be
called the primary grouping set of C, all the other grouping sets in GC will be
called the secondary grouping sets of C.

7

Gby(LI)

g1

g4

g2 g3

Fig. 4. Roll-up relationships between grouping sets on the LI scheme.

Example 3 Some examples of grouping sets on LI are

Gby(LI) = fPart, Supplier, Order, ShipDate, Status, ShipMode,

CommitDate, ReturnFlag, ReceiptDateg

g1 = fPart, OMonth, SNationg

g2 = fBrand, Typeg

g3 = fOYear, SNationg

g4 = ;

The roll-up relationships between them are summarized in Figure 4. 2

Though a large part of the queries the user formulates involve a subset of
measures of a single cube scheme (Meas(q) � Meas(C)), part of the queries
may require comparing measures aggregated on the same grouping set but
taken from distinct cube schemes; in the OLAP terminology, these are called
drill-across queries.

Example 4 The query which compares the total available quantity and the
total quantity sold for each part, characterized byGby(q) = fPartg,Meas(q) =
fAvailQty, Qtyg, and Sel(q) = 1, is a drill-across query on LI and PS. Its SQL
formulation is the following:

SELECT P.Part, SUM(PS.AvailQty), SUM(LI.Qty)
FROM LINEITEM AS LI, PART AS P, PARTSUPPLIER AS PS
WHERE LI.Part = P.Part
AND PS.Part = P.Part
GROUP BY P.Part

2

Given a query q and a set of measures M 0 � Meas(q), we will call the pro-
jection of q on M 0 the query q0 characterized by Gby(q0) = Gby(q), Sel(q0) =
Sel(q), and Meas(q0) =M 0.

8

2.3 Candidate views

In MDs, the response to the workload is typically improved by materializing,
besides the primary view storing elemental data, a set of secondary views which
store the pre-computed results to frequent/critical queries. In the classical
approaches to materialization, each view includes all and only the measures of
one cube scheme; thus, in principle, each grouping set on a given cube scheme
determines exactly one possible view to be materialized.

Several algorithms have been proposed to determine the set of materialized
views which minimizes the workload cost by respecting a constraint posed
on the total storing space. Most approaches [1,5,13] start by determining the
set of views which may potentially reduce the cost for executing the workload
(candidate views) 2 ; then, the views to be materialized are chosen by applying
some (exact or heuristic) optimization technique to the set of candidate views.
In particular, in [1] the authors supply a criterion for de�ning candidate views
and prove that materializing a non-candidate view can never decrease the
workload cost.

In the remainder we will assume that a set of candidate views has been de-
termined for each cube scheme involved in the workload. To the best of our
knowledge, no approach to materialization in the literature takes drill-across
queries into account; on the other hand, since these queries often play a rel-
evant role within the workload, it is necessary to involve them in the opti-
mization process. Thus, in determining the candidate views, every drill-across
query is substituted in the workload by its projections on the measures of the
cube schemes involved.

Let Cand(C) denote the set of grouping sets of the candidate views (candidate
grouping sets) determined for cube scheme C. For each cube scheme, every
measure must be materialized at the primary grouping set (i.e. in its non-
aggregated form); thus, Gby(C) 2 Cand(C) for every C.

3 Materialization of fragmented views

While in the classical approach to materialization each view is univocally
characterized by its grouping set and by the cube scheme it is computed
from, in our approach a view (which will be more properly called fragment)
is characterized by its grouping set and by a set of measures belonging to the

2 For instance, a view whose grouping set is coarser than the grouping sets of all
the queries in the workload is never useful, thus it is not candidate.

9

cube schemes in the multidimensional scheme.

De�nition 3 (Fragment) Given multidimensional scheme D, a fragment F
on D is de�ned by a grouping set Gby(F) and by a set of measures Meas(F),
where Gby(F) 2 GCk for each Ck 2 D such that Meas(F) \Meas(Ck) 6= ;.

In terms of relational implementation, fragment F corresponds to a fact table
having the attributes in Gby(F) as the key and the measures in Meas(F) as
non-key attributes.

Example 5 The fact table for fragmentF withGby(F) = fPartg andMeas(F) =
fAvailQty, Qtyg has scheme

LINEITEM F(Part, AvailQty, Qty)

and is de�ned by the query in Example 4. 2

De�nition 4 (Fragmentation) Let Cand(Ck) be the candidate grouping sets
for Ck 2 D. A fragmentation on D is a set H of fragments with the following
properties:

(1) Consistent. A fragment always corresponds to a candidate grouping set:

8Fi 2 H; 8ms 2Meas(Fi)

9Ck 2 D : Gby(Fi) 2 Cand(Ck) ^ms 2Meas(Ck) (1)

(2) Lossless. Each measure of every cube scheme is materialized at least at
its primary grouping set:

8Ck 2 D;8ms 2Meas(Ck)

9Fi 2 H : Gby(Fi) = Gby(Ck) ^ms 2Meas(Fi) (2)

(3) Non-redundant. No overlap between fragments is allowed:

8Fi;Fj 2 H (Gby(Fi) = Gby(Fj))) (Meas(Fi) \Meas(Fj) = ;) (3)

It should be noted that several fragments, even de�ned on di�erent grouping
sets, may be necessary to solve a given query. Given a subset of fragments
H0 � H, query q can be answered on H0 i�

8ms 2Meas(q) 9Fi 2 H
0 : ms 2Meas(Fi) ^ Gby(q)�Gby(Fi) (4)

Due to constraint (2), every possible query on D can be answered on H. If
q necessarily requires two or more fragments (since no fragment includes all
the measures in Meas(q)), it must be solved by �rst solving all its projections

10

on the measures of the single fragments, then performing a join between the
results (the join attributes are those in Gby(q)).

In the remainder of this section we face the problem of determining the frag-
mentation which minimizes the workload cost satisfying a given constraint
on the global space for materialization. After emphasizing the motivations
for fragmentation by proposing a quantitative example on the TPC-H bench-
mark, we will introduce the problem formulation and propose a mathematical
programming approach to determine the optimal fragmentation.

3.1 Fragmentation vs. classical materialization: an example

In the all-or-nothing approach to materialization, selecting a candidate group-
ing set g 2 Cand(C) during the optimization process means materializing a
view with grouping set g and measures Meas(C). As a result, each view in-
cludes measures which describe the same cube scheme but, within the work-
load, may be often requested separately. We argue that the system overall
response to the workload may be increased by materializing fragments which
include only the measures which typically appear together within the queries.

Moreover, drill-across queries are typically solved by joining views de�ned on
di�erent cube schemes. In our approach, the access costs for these queries may
be decreased by materializing fragments which include measures taken from
di�erent cube schemes, aggregated on the same grouping set.

Let the workload on LI and PS include three queries de�ned as follows:

Meas(q1) = fDiscPrice, Charge, Taxg;

Gby(q1) = fBrand, Supplierg;

Meas(q2) = fUnitPrice, Qty, ExtPrice, Discountg;

Gby(q2) = fPart, Supplier, ShipDateg;

Meas(q3) = fQty, AvailQtyg;

Gby(q3) = fPart, Supplierg

While q1 and q2 are formulated on LI, q3 is a drill-across query on LI and PS;
all selectivities are assumed equal to 1. The candidate grouping sets for this
workload are

Cand(LI) = fGby(LI); Gby(q1); Gby(q2); Gby(q3)g;

Cand(PS) = fGby(PS); Gby(q3)g

Using a classical approach, the possible secondary views to materialize are V1,

11

Table 1
Execution costs; a dash denotes that a query cannot be executed on a
view/fragment, the costs in parentheses denote that not all the measures required
by the query are found on the fragment.

View/fragment q1 q2 q3

V1 2 084 - -

V2 54 932 54 932 (54 932)

V3 6 934 - (6 934)

V4 - - (2 051)

F1 1 028 - -

F2 - 35 157 (35 157)

F3 - - 2 051

F4 - 38 086 38 086

F5 - - (1172)

V2, V3, and V4 characterized by

Meas(V1) = Meas(V2) = Meas(V3)

= fUnitPrice, Qty, ExtPrice, Discount, DiscPrice, Charge, Taxg;

Meas(V4) = fAvailQty, SupplyCostg;

Gby(V1) = Gby(q1);

Gby(V2) = Gby(q2);

Gby(V3) = Gby(V4) = Gby(q3)

Consider now the �ve fragments F1; : : : ;F5 de�ned as follows:

Meas(F1) = fDiscPrice, Charge, Taxg;

Gby(F1) = Gby(q1);

Meas(F2) = fUnitPrice, Qty, ExtPrice, Discountg;

Gby(F2) = Gby(q2);

Meas(F3) = fQty, AvailQtyg;

Gby(F3) = Gby(q3);

Meas(F4) = fUnitPrice, Qty, ExtPrice, Discount,AvailQtyg;

Gby(F4) = Gby(q2);

Meas(F5) = fAvailQtyg;

Gby(F5) = Gby(q3)

The costs for executing each query on each view and fragment are summa-
rized in Table 1. The function cost used expresses the number of disk pages in
which the tuples required to answer the query are contained, and is detailed
in Appendix A. In Table 2 some materialization solutions are compared in

12

Table 2
Comparison of materialization solutions.

Mater. views/fragments Size (MB) Workload cost (pages)

H1 = fV2;V4g 456 166 847

H2 = fV1;V2;V4g 473 113 999

H3 = fV2;V3;V4g 511 70 851

H4 = fV1;V2;V3;V4g 528 66 001

H5 = fF1;F2;F3g 306 38 236

H6 = fF1;F4g 313 77 200

H7 = fF1;F2;F5g 299 72 514

terms of total disk space occupied and workload cost; primary views are not
considered, assuming that they will be materialized within all solutions. In
particular, materializing three subsets of fragments is compared to material-
izing four subsets of views.

It clearly appears how fragmentation may reduce the overall workload cost
since:

� While each view includes all the measures in its cube scheme, each fragment
only includes those measures which, aggregated at the given grouping set,
are useful for the workload.

� Materializing small fragments instead of large views leads to decreasing
the query cost both directly, since smaller fact tables are to be read, and
indirectly, since the storage space saved can be used to materialize extra
fragments.

� Including measures from di�erent cube schemes in the same fragment re-
duces the cost of drill-across queries since no join between fact tables is
required.

� The extra space required by key duplication quickly decreases when the
grouping set decreases; it is further reduced when junk dimensions 3 are
present.

� The e�ectiveness of fragmentation for MDs may be higher than for opera-
tional non-redundant databases; in fact, in MDs the presence of fragments
storing the same measures at di�erent levels of aggregation makes multiple
solutions possible.

3 In [14], the term junk dimensions is used to denote the case in which two or more
hierarchies are represented jointly within the same dimension table.

13

3.2 Problem formulation

In this section we propose the Vertical Fragmentation Problem (VFP) as a
combinatorial optimization problem and discuss a possible IP formulation.

Recent IP results, both on exact [10] and heuristic [16,21] techniques, have in
fact reached a point where even complex real-world problems can be solved
in acceptable CPU time. It is thus worthwhile an investigation of eÆcient IP
formulations, as these provide a key to directly access robust and e�ective
solution techniques.

We begin by observing that, while in principle VFP should be solved for
the whole set of cube schemes in the multidimensional scheme, in practice it
may be convenient to mix measures belonging to two di�erent cube schemes
in the same fragment only if there is at least one candidate grouping set gj
common to both cube schemes, and the workload includes at least one drill-
across query on them which can be answered on gj. In most cases, this allows
to dramatically cut the complexity by adopting a simple divide-and-conquer
approach and applying fragmentation separately on subsets of cube schemes
based on partial workloads. In the following, D will stand for one of these
subsets.

Given a workload, the measures of each cube scheme in D can be partitioned
into subsets (minterms) such that all the measures in a minterm are requested
together by at least one query and do not appear separately in any other query.
We call terms the sets of measures, even of di�erent cube schemes, recursively
de�ned as follows:

(1) a minterm is a term;
(2) the union of two terms including measures required from the same query

is a term.

For instance, on LI, given Q = fq1; q2; q3g where

Meas(q1) = fUnitPrice, Qty, ExtPrice, Discountg;

Meas(q2) = fUnitPrice, Qty, DiscPrice, Chargeg;

Meas(q3) = fDiscPrice, Charge, Taxg

the minterms are:

mt1 = fUnitPrice, Qtyg;

mt2 = fExtPrice, Discountg;

mt3 = fDiscPrice, Chargeg;

mt4 = fTaxgg

14

T

Q

q2

q1

q3

 Gby(LI)
 Gby(PS)
 Gby(q1)
 Gby(q2)
Gby(q3)

{D
is

cP
ric

e,
C

ha
rg

e,
T

ax
}

{U
ni

tP
ric

e,
E

xt
P

ric
e,

D
is

co
un

t}
{A

va
ilQ

ty
}

{Q
ty

}
{U

ni
tP

ric
e,

E
xt

P
ric

e,
D

is
co

un
t,Q

ty
}

{A
va

ilQ
ty

,Q
ty

}
M

ea
s(

LI
)

M
ea

s(
P

S
)

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

G

T

{D
is

cP
ric

e,
C

ha
rg

e,
T

ax
}

{U
ni

tP
ric

e,
E

xt
P

ric
e,

D
is

co
un

t}
{A

va
ilQ

ty
}

{Q
ty

}
{U

ni
tP

ric
e,

E
xt

P
ric

e,
D

is
co

un
t,Q

ty
}

{A
va

ilQ
ty

,Q
ty

}
M

ea
s(

LI
)

M
ea

s(
P

S
)

0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

G

Fig. 5. Sets of the xijk (left) and yjk (right) for fragmentation H5 in Section 3.1.

The corresponding set of terms is:

T = fmt1;mt2;mt3;mt4;mt1 [mt2;mt1 [mt3;mt3 [mt4;

mt1 [mt2 [mt3;mt1 [mt3 [mt4;Meas(LI)g

Given the multidimensional schemeD and workload Q, let G =
S
C2DCand(C)

be the set of all candidate grouping sets and T the set of all terms. In the
following we will show how VFP can be modeled by expressing linear IP con-
straints over two sets of 0-1 binary variables, fxijkg and fyjkg, whose indexes
correspond to the indexes of the queries qi 2 Q, of the grouping sets gj 2 G

and of the terms tk 2 T , respectively. Setting yjk = 1 means stating that a
fragment Fjk with grouping set Gby(Fjk) = gj and measures Meas(Fjk) = tk
will be created. Setting xijk = 1 means stating that, when answering qi, the
measures in Meas(qi)\ tk will be read from Fjk. Thus, a solution at the same
time denotes a fragmentation,

H = fFjk : yjk = 1g (5)

and speci�es on which fragment(s) each query in Q is assumed to be executed.
Figure 5 shows the solution which represents fragmentation H5 proposed in
the example in Section 3.1, featuring 3 fragments. The solution also denotes
that, for instance, q1 is executed on F1.

De�nition 5 (VFP) Given a multidimensional scheme D, a workload Q on
D, a set of candidate grouping sets Cand(C) for each cube scheme C 2 D,

15

Table 3
Notation employed for index sets in the IP formulation of VFP.

Q Index set of the queries in Q

G Index set of the grouping sets in G

T Index set of the terms in T

M Index set of the measures in
S
C2DMeas(C)

Gi � G Index set of the useful grouping sets for query i 2 Q

Mi �M Index set of the measures in Meas(qi)

Tj � T Index set of the terms at grouping set j 2 G

QTij � T Index set of the useful terms for query i 2 Q at grouping set j 2 Gi

MTjs � T Index set of the useful terms for measure s 2 M at grouping set j 2 G

and a constraint B on disk space, VFP consists in determining, among the
fragmentations of D which require no more than B disk space, the one which
minimizes the cost of workload Q.

Using the notation for index sets summarized in Table 3, the IP formulation
of VFP is as follows:

Cost(V FP) = Min
X
i2Q

X
j2Gi

X
k2QTij

cijkxijk (6)

s:t:
X
j2Gi

X
k2MTjs

xijk � 1 i 2 Q; s 2 Mi (7)

X
k2MTjs

yjk � 1 j 2 G; s 2 M (8)

xijk � yjk i 2 Q; j 2 Gi; k 2 QTij (9)X
j2G

X
k2Tj

bjkyjk � B (10)

xijk 2 f0; 1g i 2 Q; j 2 Gi; k 2 QTij (11)

yjk 2 f0; 1g j 2 G; k 2 Tj (12)

where:

� Cost(V FP) denotes the optimal cost of VFP, i.e. the cost of Q on the
optimal fragmentation;

� xijk = 1 i�, when answering query i, the measures in term k are read at
grouping set j;

� yjk = 1 i� xijk = 1 for at least one query i;
� cijk is the cost for (partially) answering query i on fragment Fjk de�ned by
gj and tk, i.e. for reading the relevant term k on grouping set j (estimated
for instance as in formula (A.2) in Appendix A);

16

� bjk is the disk space required to store fragment Fjk (calculated as in formula
(A.1) in Appendix A).

� Given i 2 Q, Gi = fj : Gby(qi)�gj ^ (9C 2 D : gj 2 Cand(C) ^Meas(qi) \
Meas(C) 6= ;)g is the index set of the grouping sets which might be used
to solve qi.

� Given j 2 G and s 2 M, MTjs = fk : ms 2 tk ^ (9C 2 D : gj 2 Cand(C) ^
ms 2 Meas(C))g is the index set of the terms which might be used to
retrieve ms at grouping set gj .

� Given i 2 Q and j 2 Gi, QTij =
S
s2Mi M

Tjs is the index set of the terms
which might be used to solve qi at grouping set gj.

� Given j 2 G, the index set of the terms at grouping set gj is Tj =
S
i2Q QTij =S

s2M MTjs.

The explanation of the elements of formulation VFP is as follows. The objec-
tive function (6) states that the solution must minimize the sum of the costs
for answering all queries in Q on each fragment required (see Appendix A).
Inequalities (7) impose that each measure required by a query is read on at
least one grouping set, i.e. that the solution satis�es the workload. Inequali-
ties (8) require that, for each grouping set, a measure belongs to at most one
term, i.e. that the fragmentation is non-redundant as stated in property (3)
of De�nition 4. Inequalities (9) link the x and y variables and inequality (10)
is the memory knapsack constraint, stating that the disk space required by
fragmentation must be less than B. Finally, (11) and (12) are the integral-
ity constraints. As to the other fragmentation properties, consistency (1) is
implicitly expressed by formulating the IP constraints on the restricted index
sets Gi, QTij , and MTjs instead of their supersets G and T . Lossless fragmen-
tation (2) is enforced by inserting in the workload, for each cube scheme C,
a dummy query qC such that Meas(qC) = Meas(C), Gby(qC) = Gby(C), and
Freq(qC) = 0: this trick allows for making fragmentation lossless without al-
tering the workload cost.

Notice the structure of VFP. There are essentially three blocks of constraints:
inequalities (7), (8) and (10). Inequalities (7), the query satisfaction con-
straints, are actually set covering constraints imposing that exactly one xijk
variable enters the solution for each i and for each measure in Mi: problem
costs are attached only to variables xijk, thus this set covering part directly
a�ects the objective cost. Inequality (10), as mentioned, is a knapsack con-
straint, while inequalities (8) are needed to impose measure-term surjectivity
in the form of set packing constraints. Problem VFP is NP-hard, since when
no constraint is imposed on memory (i.e., B is very big) and only one query
i 2 Q is de�ned for each j 2 Gi and k 2 QTij, it becomes a standard set
covering problem, which is NP-hard. When memory is tight, VFP is further
complicated by the interplay of set covering, set packing and knapsack.

By a linear relaxation of integrality constraints, that is by substituting con-

17

Table 4
Workload composition in terms of number of queries on each cube scheme.

Workload on LI on PS on LI and PS Total

Q1 15 2 3 20

Q2 19 6 5 30

Q3 23 9 8 40

straints (11) and (12) with:

xijk � 1 i 2 Q; j 2 Gi; k 2 QTij (13)

yjk � 1 j 2 G; k 2 Tj (14)

we get problem LVFP: a linear problem that can be solved in polynomial time
and whose optimal solution value Cost(LV FP) constitutes a lower bound to
Cost(V FP), the optimal solution cost of problem VFP.

4 Experimental results

An extensive set of tests have been carried out in order to verify the e�ec-
tiveness of fragmentation. Tests are aimed at comparing our approach to the
all-or-nothing solution to view materialization and at emphasizing the speci�c
characteristics of the fragmented solutions. Tests are based on the well-known
TPC-H benchmark [20], sized at 1 GB and loaded on Red Brick Decision
Server 6.0. The operational scheme proposed within TPC-H has been used
to obtain the two cube schemes, LI and PS, whose simpli�ed versions have
been used as working example in the previous sections. In our implementa-
tion, LI consists of 7 hierarchies with 40 attributes and 10 measures, PS of 3
hierarchies with 20 attributes and 3 measures.

The tests are organized according to three di�erent workloads with increasing
size. Table 4 reports the distribution of queries on the di�erent cube schemes:
the bulk of the queries works on LI, while the percentage of drill-across queries
slightly increases from 15% to 20%. Q1 tightly models the TPC-H benchmark
including all the queries that can be formulated as GPSJ expressions, as well
as the GPSJ subqueries that are contained in non-GPSJ ones. Q2 and Q3

extend TPC-H by adding new queries with di�erent grouping sets and whose
measures are chosen consistently with the application logic de�ned in the
benchmark.

Maintaining a realistic clustering of measures in the test workloads is impor-

18

Table 5
Average and standard deviation (in parentheses) of the aÆnity support for the three
workloads.

Workload on LI on PS on LI and PS Average

Q1 26% (33%) 17% (33%) 13% (32%) 23.1% (32.8%)

Q2 20% (31%) 27% (31%) 26% (41%) 22.4% (32.7%)

Q3 21% (37%) 26% (22%) 22% (28%) 22.3% (31.8%)

Table 6
Average and standard deviation (in parentheses) of the aÆnity con�dence for the
three workloads.

Workload on LI on PS on LI and PS Average

Q1 4% (4%) 7% (14%) 8% (19%) 4.9% (7.2%)

Q2 3% (12%) 11% (12%) 12% (19%) 6.1% (13.2%)

Q3 3% (13%) 9% (7%) 8% (4%) 5.3% (9.8%)

tant to avoid to excessively emphasize the e�ect of fragmentation. On the
other hand, measures are naturally clustered by the level of correlation of the
information they carry. The level of aÆnity of a couple of measures, mi and
mj, within workload Q can be evaluated computing the support and the con-
�dence for the association rule that relates the presence of one measure within
a query with the presence of another measure (i.e. m1) m2):

supp(mi;mj) =
jfq 2 Q : mi 2Meas(q) ^mj 2Meas(q)gj

jQj
(15)

conf(mi;mj) =
jfq 2 Q : mi 2Meas(q) ^mj 2Meas(q)gj

jfq 2 Q : mi 2Meas(q)gj
(16)

An estimate of the global aÆnity level for workload Q on cube scheme C is
given by the average support and con�dence for all the couples of measures in
Meas(C). A high value of the support denotes that measures appear clustered
together in most queries; given the support, the con�dence is high if measures
appear in di�erent clusters only within a few queries. Tables 5 and 6 show
the average and standard deviation of, respectively, support and con�dence of
the global aÆnity for the three workloads; data are shown separately for the
di�erent cube schemes.

In the following subsections, the workload execution cost is expressed in terms
of disk pages. It is remarkable that all the data presented in the tests were
directly measured on the DBMS rather than obtained from simulations, thus
avoiding that the simpli�cations induced by the cost function proposed in Ap-
pendix A invalidate our results. As to indexing of data, we adopted a standard
solution which provides a B+-Tree index on each primary key of both fact and
dimension tables.

19

Table 7
Shift from optimality induced by the heuristic reduction of the set of candidate
views on the materialization solution for Q1 with 1.4 GB available.

Cost Shift from optimality
Numb. of Views

Unfrag. Frag. Unfrag. Frag.

100 3 286 453 538 372 256% 6%

300 1 284 958 520 647 0% 2%

500 1 284 958 510 230 0% 0%

743 1 284 958 510 230 0% 0%

The algorithms for view materialization and fragmentation are implemented
within WAND [7], the data warehouse design tool we developed. In selecting
the all-or-nothing approach to materialization to be compared with fragmenta-
tion, we observed that: (1) all approaches to materialization are characterized
by an objective function to be optimized and an optimization algorithm; (2)
any objective function could be adopted in principle, but the comparison is
sound only if the same function used for fragmentation is adopted; (3) as to the
optimization algorithm, all approaches to materialization we are aware of are
based on heuristic algorithms which deliver sub-optimal solutions [25]. Thus,
adopting one or the other of the materialization algorithms proposed in the
literature would not alter signi�cantly the comparison results: the one we im-
plemented is described in [1] and selects views using a tabu search heuristics;
the objective function is the one described in Appendix A, which estimates
the execution cost of the workload.

Solving the fragmentation problem on the full Cand(C) set becomes unfeasible
for large workloads; the solution we adopted, proposed in [1], preliminarily
reduces the cardinality of each Cand(C) by repeatedly dropping the candidate
views whose grouping set is very close to the one of another candidate view
in Cand(C). The reason for this heuristic criterion, that is well-known and
accepted by data warehouse designers [14], relies on the observation that it
is useless to materialize fragments/views on very similar grouping sets. When
comparing fragmented solutions to unfragmented ones, the same starting set
of candidate views is always used. Table 7 shows how the preliminar reduction
of the candidate view sets a�ects the solution optimality. All test has been
carried out on Q1 and show that this heuristic criterion actually degrades
the solution only in the all-or-nothing approach when dramatic reductions are
operated. It is remarkable that, even when signi�cant reductions are applied,
the extra exibility induced by fragmentation limits the shift from optimality.

20

M
ill

io
ns

 o
f d

is
k

pa
ge

s

Available space (MB)

Unfragmented Fragmented

0

1

2

3

4

700 1000 1400 1800 2200

0

1

2

3

4

5

6

700 1000 1400 1800 2200

0

1

2

3

4

5

6

7

700 1000 1400 1800 2200

M
ill

io
ns

 o
f d

is
k

pa
ge

s
M

ill
io

ns
 o

f d
is

k
pa

ge
s

Available space (MB)

Available space (MB)

Fig. 6. Fragmented and unfragmented workload costs for Q1 (top), Q2 (middle),
and Q3 (bottom) varying the space constraints.

4.1 Workload cost optimization

The aim of this set of tests is to analyze to which extent fragmentation re-
duces the workload cost and which factors determine the reduction. Figure 6
compares the execution costs for the fragmented and unfragmented solution
of Q1, Q2, and Q3. For each workload, the space constraint ranges from 700
MB to 2200 MB; since the primary views globally require 640 MB, the space

21

10

15

20

25

30

35

700 1400 1800 1000 2200

Available space (MB)

N
um

be
r

of

fr
ag

m
en

ts
/v

ie
w

s

Unfragmented Fragmented

Fig. 7. Number of fragments and views materialized for di�erent disk space con-
straints (data are averaged on the three workloads).

reserved for secondary views varies from 60 MB to 1560 MB.

The cost reduction, that ranges from 18% to 73% and is 38% in the average,
is due to two interrelated factors: on the one side, each query requires less disk
pages to be answered since only relevant measures are stored in fragments; on
the other, the saved space can be used to materializemore fragments which fur-
ther enhance performances. It should be noted that the previously mentioned
factors participate di�erently in reducing the cost, according to the available
space. When only a limited space is available for materialization, most of the
saving comes from the reduced size of fragments while, when more space is
available, the saving is mainly due to the execution of queries on fragments
that do not �t the disk space constraint in the all-or-nothing solution. The
rationale for this behavior is that, the more the materialized views, the more
the disk space saved by dropping unuseful measures, the more the extra frag-
ments materialized; this is con�rmed by Figure 7 which compares the number
of fragments and the number of views for di�erent space constraints, showing
that the former increases more quickly than the latter. Table 8 shows, for
workload Q1 and for di�erent space constraints, the number of queries which
in both the fragmented and the unfragmented solutions are solved on the same
grouping set and the percentage of saving due to measure dropping.

Fragmentation also allows to store within the same fragment measures from
di�erent cube schemes. Table 9 shows the number of queries executed on such
uni�ed fragments for di�erent workloads and space constraints. It should be
noted that, for some drill-across queries, no uni�ed fragment may be available
due to the lack of disk space which forces the DBMS to execute the query
on one or more di�erent (sub-optimal) fragments. In other cases, uni�ed frag-
ments are not materialized since it is not convenient at all, for example when
other queries can be solved using a subset of the measures to be uni�ed. In

22

Table 8
Number of queries of Q1 solved on the same grouping set in both the fragmented
and unfragmented solution, and percentage saving due to measure dropping.

Available Number Saving due to

space of queries measure dropping

700 13 95%

1 000 13 30%

1 400 10 5%

1 800 11 12%

2 200 14 2%

Table 9
Number of queries executed on uni�ed fragments for the three workloads.

Available space Q1 Q2 Q3

700 0 4 4

1 000 0 4 4

1 400 0 5 3

1 800 1 4 3

2 200 1 4 3

all these cases, uni�cation is driven by the cost function, thus the solution ob-
tained is always optimized for the given workload and disk space constraint.

In principle, within the optimal materialization solution, when no constraints
on space are posed, each query in the workload should be answered on a
view with the same grouping set required by the query. In the all-or-nothing
approach, this is achieved by materializing one view for each grouping set
required by at least one query; in the fragmented approach, materializing only
the subset of relevant measures will suÆce. Consequently, as con�rmed at �rst
glance by analyzing the graphs, fragmented curves atten for smaller disk
space than unfragmented ones. When the space constraint is not �xed a priori
and is left to the designer's choice, the best trade-o� between performance and
space should be determined by a threshold on the extra-space bene�t (i.e. such
that the cost decreases for each MB further devoted to materialization); in the
fragmented approach, such threshold will be crossed for lower disk spaces.

Although it is very likely that the core workload is available to the designer
a priori, it is not possible to know in advance all the queries that will be
submitted to the warehouse. Extemporary queries formulated by the users
during OLAP sessions may decrease the global saving induced by the vertical
fragmentation solution which is tailored on a speci�c workload. The e�ects

23

Table 10
Cost of a workload when executed on the materialization solution optimized for
itself and for Q1 (with space constraint 1GB).

Q2 Q3

Mat. solution
Opt. for Q2 Opt. for Q1 Opt. for Q3 Opt. for Q1

Unfragmented 4 138 12 989 6 424 49 537

Fragmented 3 411 11 204 4 565 52 772

of extemporary queries have been experimentally evaluated by comparing the
performances of the unfragmented and fragmented solutions on workloads
containing also queries not included in the reference workloads used for opti-
mization. In particular, in Table 10 we compare the costs for executingQ2 (Q3)
on the (fragmented and unfragmented) materialization solutions optimzed for
Q2 (Q3) and for Q1, respectively. It is apparent that, as we might expect, the
workload cost rises quickly for both the fragmented and unfragmented solu-
tions as soon as extemporary queries are considered. When increasing their
percentage, the performance for the fragmented solution decays a little more
quickly than that of the unfragmented solution: in our tests, the two costs
are comparable when 40% of the queries are extemporary. The reason for this
behavior is that, though the extra-measures included in each view can be
potentially useful to solve extemporary queries, its grouping set is often too
coarse. Furthermore, the probability that a view can be used to answer a query
increases for views with �ner grouping sets which, unfortunately, determine
lower cost savings.

4.2 Considerations on storage space

One of the main objections often moved to vertical fragmentation is that it
causes a waste of disk space due to replication of keys. We wish to emphasize
that our approach is based on reducing the size of fact tables by decreasing
the number of measures included, while key replication occurs as a side e�ect
only when multiple fragments are materialized on the same cube scheme and
on the same grouping set. This is con�rmed by the experimental results re-
ported in this section, where the incidence of key replication on fragmentation
e�ectiveness is evaluated.

Figure 8 reports the average number of surrogate keys composing the primary
key of fragments. Most dimensions are completely grouped, which proves that
fragments are, in the average, much coarser than primary views. In fact:

� OLAP queries are intrinsically aggregated in order to allow summary infor-
mation to be easily analyzed by a human user.

24

2.5

2.6

2.7

2.8

2.9

3

3.1

700 1000 1400 1800 2200

Available space (MB)

A
ve

ra
ge

 n
um

be
r

of
 a

ttr
ib

ut
es

Fig. 8. Average number of surrogate keys for fragment (data are averaged on the
three workloads).

0%

5%

10%

15%

20%

25%

30%

700 1000 1400 1800 2200

Available space (MB)

Replicated keys Materialized measures

Fig. 9. Percentage of replicated keys and percentage of measures (data are averaged
on the three workloads).

� The cost reduction induced by materialization is due to the reduced number
of tuples that are read when answering a query on a view. On the other hand,
due to the sparsity of primary views, only coarse grouping sets actually
produce a signi�cant reduction of the cardinalities of secondary views. Thus,
most views are materialized on very coarse grouping sets.

The shortness of surrogate keys reduces the e�ects of redundancy since the
space devoted to them is percentually lower for coarse fragments. As already
stated, the e�ects of redundancy are further smoothed since our approach is
inclined to materialize one fragment on each grouping set rather than more
fragments on the same one. This behavior is con�rmed by Figures 9 and 7
showing that the increase in the number of fragments is much faster than the
increase in the number of replicated keys when rising the space constraint. The

25

percentage of replicated keys (calculated as the fraction of the total number
of attributes in the fact tables) is lower for tight constraints and never exceeds
19%.

Figure 9 also shows the average percentage ratio between the number of mea-
sures materialized in the fragmented and in the unfragmented solutions, which
decreases when more space is available since fragments become more special-
ized (i.e. few queries are answered on each fragment).

4.3 Computational testing

We implemented an exact methodology for solving instances of VFP. The
computational testing was performed using a commercial IP solver (CPLEX
6.6 by Ilog Inc.) to produce �rst an optimal LVFP solution, thus a lower
bound, and then the optimal integer solution. All tests were run on an Intel
platform with 512 Mb of RAM, running at 933 MHz under Windows Me. We
�rst generated some simple instances to �ne-tune the CPLEX parameters and
then solved the instances described above. A full account of the computational
testing can be found in Table 11. The columns show the following data:

� Probl: problem identi�er;
� n: number of queries in the workload;
� B: size of memory constraint;
� Cost(LV FP): optimal linear relaxation solution cost;
� err: percentage distance from IP optimality of Cost(LV FP);
� t(LV FP): CPU time to obtain Cost(LV FP);
� Cost(V FP): optimal integer solution cost;
� t(V FP): CPU time to obtain Cost(V FP);

Problem instances Qa to Qe are used to tune the �nal algorithm and can all
be easily solved by CPLEX. The other instances are those described in the
previous sections. Besides the increase in their dimension, it is apparent from
column t(V FP) how they are structurally more complex than the training
ones. As expected, the tighter the memory constraints, the harder the instance.
This can be seen both from the higher error of the bound w.r.t. the optimal IP
cost and from the time needed to get the optimal IP solution. Instances Q2S7
and Q3S7 are the hardest ones, they could be solved with the available RAM,
but the CPU time needed is huge. This increased diÆculty arises from the
interplay of all problem constraints, whereas with loose memory requirements
the active constraints are essentially the set covering ones.

All problem instances used in this presentation can be downloaded from the
URL: http://astarte.csr.unibo.it/data/vfp.

26

Table 11
Computational test summary results.

Probl n B Cost(LV FP) err t(LV FP) Cost(V FP) t(V FP)

Qa 3 1 400 50 475 0.00 0.05 50 475 0.00

Qb 5 1 400 281 816 2.13 0.22 287 957 0.00

Qc 10 1 400 65 190 0.00 0.66 65 190 0.00

Qd 10 1 400 33 976 0.00 0.06 33 976 0.00

Qe 10 1 400 116 463 0.00 0.11 116 463 0.00

Q1S7 20 700 322 535 13.77 63.65 374 047 847.94

Q1S10 20 1 000 152 816 0.70 904.95 153 894 5 308.99

Q1S14 20 1 400 98 046 1.16 306.48 99 201 3 327.66

Q1S18 20 1 800 96 270 0.00 342.41 96 270 52.73

Q1S22 20 2 200 96 270 0.00 370.59 96 270 31.30

Q2S7 30 700 564 786 11.60 346.97 638 882 24 563.01

Q2S10 30 1 000 353 786 0.47 1 343.03 355 456 4 738.76

Q2S14 30 1 400 274 042 2.14 645.87 280 029 6 880.08

Q2S18 30 1 800 248 205 1.94 513.66 253 117 1 677.59

Q2S22 30 2 200 241 330 0.00 607.91 241 330 162.80

Q3S7 40 700 718 601 10.14 1 824.24 799 666 76 703.28

Q3S10 40 1 000 464 241 0.06 653.83 464 535 8 539.98

Q3S14 40 1 400 376 146 1.78 551.29 382 947 3 780.41

Q3S18 40 1 800 336 431 1.37 680.53 341 090 4 362.62

Q3S22 40 2 200 316 795 0.11 668.17 317 155 2 561.45

5 Related work

The problem of determining the optimal partitioning given a workload has
been widely investigated within the context of centralized as well as distributed
database systems, considering non-redundant allocation of fragments (for in-
stance, see [3,15,19]); unfortunately, the results reported in the literature can-
not be applied here since the redundancy introduced by materializing views at
di�erent aggregation levels binds the partitioning problem to that of deciding
on which view(s) each query should be executed. Thus, ad-hoc approaches
must be devised for MDs.

While horizontal partitioning has been widely investigated and is currently

27

adopted by designers [8], to the best of our knowledge only a few approaches
to vertical fragmentation in MDs have been devised. In [17], fragmentation
is extended to both measures and non-key dimensions (i.e. dimensions func-
tionally determined by other dimensions); on the other hand, no algorithm
for determining the optimal fragmentation is proposed. In [4], views are par-
titioned vertically in order to build dataindexes to enhance performance in
parallel implementations of MDs; still, no suggestion is given on how to deter-
mine the optimal partitioning. In [5], materialization and fragmentation are
seen as separate steps; the views are determined by the materialization algo-
rithm and then fragmented, thus compromising the process overall optimality.

At the physical level, vertical fragmentation is partially implemented by pro-
jection indexes that store a single column of a relational table [18]; the cor-
respondence between the rows of the index and the rows in the main table
is transparently maintained by the DBMS. The rationale for this kind of in-
dex, which is particularly useful for selection and aggregation queries, is that
scanning a smaller structure is faster than scanning the whole table. Though
projection indexes are usually considered as auxiliary structures to improve re-
trieval eÆciency, the SYBASE IQ commercial DBMS [26,23] pushes their use
to the limit by replacing the data themselves, i.e. by storing data by columns
instead of rows. Thus, in practice, SYBASE implements an extreme fragmen-
tation in which each fragment includes a single measure. In this case, since
the correspondence between values belonging to the same row is maintained
by row identi�ers, fragmentation does not require the replication of the key
attributes.

Currently, to the best of our knowledge, no DBMS allows to include multiple
columns into one projection index, thus our fragmentation technique cannot
be applied at the physical level. However, given the competitive performance
of SYBASE, it is easy to predict a relevant utility for a workload-based frag-
mentation if multi-attribute projection indexes will be implemented. In this
case, the optmimal fragmentation could be determined using our approach
by considering, in the function estimating the access costs, that keys are not
replicated.

6 Conclusions

In this paper we have proposed a technique for materializing views in vertical
fragments, aimed to tightly �t the reference workload. In the context of mul-
tidimensional databases, due to both the redundancy of data guaranteed by
materialization and to the nature of queries, fragmentation is more complex
than for traditional relational databases on the one hand, on the other it may
yield more signi�cant bene�ts.

28

The experimental tests suggest the e�ectiveness of our approach in reducing
the workload cost as compared to the classical approach to view materializa-
tion. The robustness of fragmentation has been evaluated even with reference
to extemporary queries. The tests also allowed to confute the main drawback
typically ascribed to fragmentation, i.e. the replication of keys, showing that
its impact on the storage requirements is not relevant. Besides, key replica-
tion could be completely avoided when applying fragmentation at the physical
level, implementing it for instance by means of multi-attribute projection in-
dexes.

A The cost function

Among all the feasible solutions to the fragmentation problem, we are inter-
ested in the one which minimizes the cost for executing the workload. We
believe it is convenient to keep logical design independent on access plans in
order to both provide a more general solution and reduce complexity. Thus,
the cost function we propose intentionally abstracts from any assumptions on
the access paths, being based on the number of disk pages in which the tuples
of interest for a given query are stored.

Let qi be a query requiring at least one measure in fragment Fjk de�ned
by Gby(Fjk) = gj and Meas(Fjk) = tk, and Freq(qi) be its frequency. The
number of tuples of Fjk which must be accessed in order to answer qi is
Sel(qi) � Card(Fjk), where Card(Fjk) is the cardinality of Fjk estimated for
instance as in [22]. The total number of pages in which Fjk is contained is

bjk =

&
Card(Fjk)

�jk

'
(A.1)

where �jk is the number of tuples per disk page for Fjk. The expected,
frequency-weighted number of pages in which the tuples of Fjk necessary for qi
are stored, cijk, can be estimated with the Cardenas formula � [2] as follows:

cijk = Freq(qi) � �(Sel(qi) � Card(Fjk); bjk) (A.2)

With reference to the index set notation summarized in Table 3, the cost of
executing query i against the fragmentation denoted by X = fxijkg is then
estimated as the total number of disk pages which must be accessed in order
to retrieve all the measures in qi:

Costi(X) =
X
j2Gi

X
k2QTij

cijkxijk (A.3)

29

where xijk = 1 if, when answering qi, the measures in Meas(qi) \ tk are read
from Fjk, xijk = 0 otherwise. Finally, the overall cost for workload Q is:

Cost(X) =
X
i2Q

Costi(X) =
X
i2Q

X
j2Gi

X
k2QTij

cijkxijk (A.4)

This is the cost function minimized in (6) within the IP formulation of VFP.
Though the actual number of pages read when executing the workload may
be higher depending on the access path followed, we believe that this function
represents a good trade-o� between generality and accuracy.

References

[1] E. Baralis, S. Paraboschi, and E. Teniente. Materialized view selection in
multidimensional database. In Proc. 23rd VLDB, pages 156{165, Athens,
Greece, 1997.

[2] A.F. Cardenas. Analysis and performance of inverted database structures.
Communications of the ACM, 18(5):253{263, 1975.

[3] W.W. Chu and I.T. Ieong. A transaction-based approach to vertical partitioning
for relational database system. IEEE Trans. on Software Engineering,
19(8):804{812, 1993.

[4] A. Datta, B. Moon, and H. Thomas. A case for parallelism in data warehousing
and OLAP. In Proc. IEEE First Int. Workshop on Data Warehouse Design

and OLAP Technology, 1998.

[5] M. Golfarelli, D. Maio, and S. Rizzi. Applying vertical fragmentation techniques
in logical design of multidimensional databases. In Proc. DaWaK 2000,
Greenwich, UK, 2000.

[6] M. Golfarelli and S. Rizzi. View materialization for nested GPSJ queries. In
Proc. DMDW'2000, Stockholm, 2000.

[7] M. Golfarelli and S. Rizzi. Wand: A case tool for data warehouse design. In
Demo Proc. 17th ICDE, Heidelberg, Germany, 2001.

[8] V. Gopalkrishnan, Q. Li, and K. Karlapalem. EÆcient query processing with
associated horizontal class partitioning in an object relational data warehousing
environment. In Proc. DMDW'2000, Stockholm, 2000.

[9] J. Gray, A. Bosworth, A. Lyman, and H. Pirahesh. Data-Cube: a relational
aggregation operator generalizing group-by, cross-tab and sub-totals. Technical
Report MSR-TR-95-22, Microsoft Research, 1995.

[10] M. Gr�otschel, R.L. Graham, and L. Lov�asz. Handbook of Combinatorics.
Elsevier, 1995.

30

[11] A. Gupta, V. Harinarayan, and D. Quass. Aggregate-query processing in data-
warehousing environments. In Proc. 21rd VLDB, Zurich, Switzerland, 1995.

[12] M. Gyssens and L.V .S. Lakshmanan. A foundation for multi-dimensional
databases. In Proc. 23rd VLDB, pages 106{115, Athens, Greece, 1997.

[13] V. Harinarayan, A. Rajaraman, and J. Ullman. Implementing data cubes
eÆciently. In Proc. ACM Sigmod Conf., Montreal, Canada, 1996.

[14] R. Kimball. The data warehouse toolkit. John Wiley & Sons, 1996.

[15] X. Lin, M. Orlowska, and Y. Zhang. A graph-based cluster approach for vertical
partitioning in database design. Data & Knowledge Engineering, 11:151{169,
1993.

[16] V. Maniezzo and A. Colorni. The Ant System applied to the quadratic
assignment problem. IEEE Trans. on Knowledge and Data Engineering,
11(5):769{778, 1999.

[17] D. Munneke, K. Wahlstrom, and M. Mohania. Fragmentation of
multidimensional databases. In Proc. 10th Australasian Database Conf., pages
153{164, Auckland, 1999.

[18] P. E. O'Neil and D. Quass. Improved query performance with variant indexes.
In Proc. ACM Sigmod Conf., pages 38{49, Tucson, Arizona, 1997.

[19] M.T. �Ozsu and P. Valduriez. Principles of distributed database systems.
Prentice-Hall Int. Editors, 1991.

[20] M. Poess and C. Floyd. New TPC Benchmarks for decision support and web
commerce. ACM SIGMOD Record, 29(4), 2000.

[21] S.M. Sait and H. Youssef. Iterative computer algorithms with applications in

engineering. IEEE Computer Society press, Piscataway, NJ, 1999.

[22] A. Shukla, P. Deshpande, J. Naughton, and K. Ramasamy. Storage estimation
for multidimensional aggregates in the presence of hierarchies. In Proc. 22nd

VLDB, pages 522{531, Mumbai, India, 1996.

[23] Sybase Inc. Adaptive Server IQ: Administration and performance Guide, 2001.

[24] D. Theodoratos and M. Bouzeghoub. A general framework for the view selection
problem for data warehouse dsign and evolution. In Proc. DOLAP'00, pages
1{8, Washington, DC, 2000.

[25] D. Theodoratos, S. Ligoudistianos, and T. Sellis. View selection for designing
the global data warehouse. Data & Knowledge Engineering, 39(3):219{240,
2001.

[26] C. J. White. Sybase Adaptive Server IQ - A high-performance database for
decision processing. Technical report, DataBase Associates International, Inc.,
1999.

31

[27] J. Yang, K. Karlaplem, and Q. Li. Algorithms for materialized view design in
data warehousing environments. In Proc. 23rd VLDB, pages 136{145, Athens,
Greece, 1997.

32

