
What Time is it in the Data Warehouse?

Stefano Rizzi and Matteo Golfarelli

DEIS, University of Bologna, Viale Risorgimento 2, 40136 Italy

Abstract. Though in most data warehousing applications no relevance
is given to the time when events are recorded, some domains call for a dif-
ferent behavior. In particular, whenever late registrations of events take
place, and particularly when the events registered are subject to further
updates, the traditional design solutions fail in preserving accountability
and query consistency. In this paper we discuss the alternative design
solutions that can be adopted, in presence of late registrations, to sup-
port different types of queries that enable meaningful historical analysis.
These solutions are based on the enforcement of the distinction between
transaction time and valid time within the model that represents the
fact of interest. In particular, we show how late registrations can be dif-
ferently supported depending on the flow or stock semantics given to
events.

1 Introduction

Time is commonly understood as a key factor in data warehousing systems,
since the decisional process often relies on computing historical trends and on
comparing snapshots of the enterprise taken at different moments. Within the
multidimensional model, time is typically a dimension of analysis: thus, the rep-
resentation of the history of measure values across a given lapse of time, at a
given granularity, is directly supported. On the other hand, though the multi-
dimensional model does not inherently represent the history of attribute values
within hierarchies, some ad hoc techniques are widely used to support the so-
called slowly-changing dimensions [1]. In both cases, time is commonly meant
as valid time in the terminology of temporal databases [2], i.e., it is meant as
the time when the event or the change within a hierarchy occurred in the busi-
ness domain [3]. Transaction time, meant as the time when the event or change
was registered in the database, is typically given little or no importance in data
warehouses, since it is not considered to be relevant for decision support.

One of the underlying assumptions in data warehouses is that, once an event
has been stored, it is never modified, so that the only possible writing operation
consists in appending new events as they occur. While this is acceptable for
a wide variety of domains, some applications call for a different behaviour. In
particular, the values of one or more measures for a given event may change over
a period of time to be consolidated only after the event has been for the first
time registered in the warehouse. In this context, if the current situation is to



be made timely visible to the decision maker, past events must be updated to
reflect the incoming data.1

The need for updates typically arises when the early measurements made for
events may be subject to errors (e.g., the amount of an invoice may be corrected
after the invoice has been registered) or when events inherently evolve over
time (e.g., notifications of university enrollments may be received and stored
several days after they were issued). Unfortunately, if updates are carried out by
physically overwriting past events, some problems may arise:

– Accountability and traceability require the capability of preserving the ex-
act information the analyst based his/her decision upon. If old events are
replaced by their “new” versions, past decisions can no longer be justified.

– In some applications, accessing only up-to-date versions of information is
not sufficient to ensure the correctness of analysis. A typical case is that of
queries requiring to compare the progress of an ongoing phenomenon with
past occurrences of the same phenomenon: since the data recorded for the
ongoing phenomenon are not consolidated yet, comparing them with past
consolidated data may not be meaningful.

Note that the same problems may arise when events are registered in the data
warehouse only once, but with a significant delay with respect to the time when
they occurred: in fact, though no update is necessary, still valid time is not
sufficient to guarantee accountability. Thus, in more general terms, we will call
late registration any registration of events that is delayed with respect to the
time when the event occurs in the application domain, with the tolerance of
the natural delay related to the refresh interval of the data warehouse. A late
registration may either imply an update or not.

In this paper we discuss the design solutions that can be adopted, in the
presence of late registrations, to enable meaningful historical analysis aimed
at preserving accountability and consistency. These solutions are based on the
enforcement of the distinction between transaction time and valid time within
the schema that represents the fact of interest. The paper contributions can be
summarized as follows:

– Two possible semantics for events are distinguished, namely flow and stock,
and it is shown how they can be applied to the events occurring in the
application domain, to the events registered in the data warehouse for the
first time, and to the events registered later to represent updates (Section
4).

– Three basic categories of queries are distinguished, from the point of view of
their different temporal requirements in presence of late registrations (Sec-
tion 5).

– A set of design solutions to support late registrations is introduced, and their
relationship with the three categories of queries and with the two different
semantics of events is discussed (Section 6).

1 In the following, when using the term update, we will mean a logical update, which
does not necessarily imply a physical update (i.e., an overwrite).

2



2 Related Literature

Several works concerning temporal data warehousing can be found in the liter-
ature. Most of them are related to consistently managing updates in dimension
tables of relational data warehouses — the so-called slowly-changing dimensions
(e.g., [4, 5]). Some other works tackle the problem of temporal evolution and
versioning of the data warehouse schema [6–10]. All these works are not related
to ours, since there is no mention to the opportunity of representing transaction
time in data warehouses in order to allow accountability and traceability in case
of late registrations.

In [3] it is distinguished between transient data, that do not survive updates
and deletions, and periodic data, that are never physically deleted from the data
warehouse. In [1] two basic paradigms for representing inventory-like information
in a data warehouse are introduced: the transactional model, where each increase
and decrease in the inventory level is recorded as an event, and the snapshot
model, where the current inventory level is periodically recorded. This distinction
is relevant to our approach, and is recalled in Section 4.

In [11], the importance of advanced temporal support in data warehouses,
with particular reference to medical applications, is recognized. In [12] the au-
thors claim that there are important similarities between temporal databases
and data warehouses, suggest that both valid time and transaction time should
be modeled within data warehouses, and mention the importance of temporal
queries. Finally, in [13] a storage structure for a bitemporal data warehouse
(i.e., one supporting both valid and transaction time) is proposed. All these ap-
proaches suggest that transaction time should be modeled, but not with explicit
reference to the problem of late registrations.

The approach that is most related to ours is the one presented in [14], where
the authors discuss the problem of DW temporal consistency in consequence of
delayed discovery of real-world changes and propose a solution based on trans-
action time and overlapped valid time. Although the paper discusses some issues
related to late registrations, no emphasis is given to the influence that the se-
mantics of the captured events and the querying scenarios pose on the feasibility
of the different design solutions.

3 Motivating Examples

In the first example we provide, late registrations are motivated by the fact that
the represented events inherently evolve over time. Consider a single fact model-
ing the student enrollments to university degrees; in a relational implementation,
a simplified fact table for enrollments could have the following schema2:

FT ENROLL(EnrollDate, Degree, AYear, City, Number)

where EnrollDate is the formal enrollment date (the one reported on the enroll-
ment form). An enrollment is acknowledged by the University secretariat only

2 For simplicity, we will assume that surrogate keys are not used.

3



when the entrance fee is paid; considering the variable delays due to the bank
processing and transmitting the payment, the enrollment may be registered in
the data warehouse even one month after the enrollment has been formally done.
This is a case of late registrations. Besides: (i) notices of payments for the same
enrollment date are spaced out over long periods, and (ii) after paying the fee,
students may decide to switch their enrollment from one degree to another. Thus,
updates are necessary in order to correctly track enrollments. The main reason
why in this example the enrollment date may not be sufficient is related to the
soundness of analysis. In fact, most queries on this fact will ask for evaluating the
current trend of the number of enrollments as compared to last year. But if the
current data on enrollments were compared to the consolidated ones at exactly
one year ago, the user would wrongly infer that this year we are experiencing a
negative trend for enrollments!

The second example, motivated by the delay in registering information and
by wrong measurements, is that of a large shipping company with several ware-
houses spread around the country, that maintains a centralized inventory of its
products:

FT INVENTORY(InvDate, Product, Warehouse, Level)

We assume that the inventory fact is fed by weekly snapshots, coming from the
different warehouses, of the inventory level for each product. In this scenario,
delays in communicating the weekly levels and late corrections sent by the ware-
houses will produce late registrations, which in turn will raise problems with
justifying the decisions made on previous reports.

4 The Semantics of Events

The aim of this section is to introduce the classification of events on which we
will rely in Section 6 to discuss the applicability of the design solutions proposed.

As recognized in [1], from the point of view of the conceptual role given to
events, facts basically conform to one of two possible models:

– Transactional fact. For a transactional fact, each event may either record
a single transaction or summarize a set of transactions that occur during
the same time interval. Most measures are flow measures [15]: they refer to
a time interval and are cumulatively evaluated at the end of that period;
thus, they are additive along all dimensions (i.e., their values can always be
summed when aggregating).

– Snapshot fact. In this case, events correspond to periodical snapshots of the
fact. Measures are mostly stock measures [15]: they refer to an instant in
time and are evaluated at that instant; thus, they are non-additive along
temporal dimensions (i.e., they cannot be summed when aggregating along
time, while for instance they can be averaged).

This distinction is based on the semantics of the stored events, i.e., the events
logically recorded in the data warehouse: in a transactional fact they are meant

4



as flow events, while in a snapshot fact they are meant as stock events. Intuitively,
while flow events model a “delta” for the fact, stock events measure its “level”.

The choice of one model or another is influenced by the core workload the
fact is subject to, but mainly depends on the semantics of the domain events,
i.e., on how the events occurring in the application domain are measured: in the
form of flows or in the form of stocks. In the first case, a transactional fact is the
more proper choice, though also a snapshot fact can be used provided that (i)
an aggregation function for composing the flow domain events into stock stored
events is known, and (ii) events are not subject to updates — otherwise, after
each update, all the related (stock) events would have to be updated accordingly,
which may become quite costly. Conversely, if events are measured as stocks, a
snapshot fact is the only possible choice, since adopting a transactional fact
would require disaggregating the stock domain events into inflows and outflows
— which, in the general case, cannot be done univocally.

A large percentage of facts in the business domain naturally conform to the
transactional model. For instance, in an invoice fact, each (domain and stored)
event typically represents a single line of an invoice, and its measures quantify
some numerical aspects of that line — such as its quantity or amount. In theory,
one could as well build an equivalent snapshot fact where each stored event
models the cumulated sales made so far, computed by summing up the invoice
lines: of course this would be quite impractical, since most query will focus
on partial aggregations of invoice lines, that would have to be computed by
subtraction of consecutive stored events.

Other facts naturally conform to the snapshot model: for instance a fact mea-
suring, on each hour, the level of a river in different places along its course. Also
the centralized inventory fact mentioned in Section 3 conforms to the snapshot
model, since both its stored and domain events have stock semantics.

Finally, for some facts both models may reasonably fit: an example is the
enrollment fact seen in Section 3, where two different interpretations can be
given to events (and to measure Number accordingly) for the same schema. In
the first (transactional) interpretation each (flow) event records the number of
students from a given city who enrolled, on a given date, to a given degree course
for a given academic year. In the second (snapshot) interpretation each (stock)
event records, at a given date, the total number of students from a given city
who enrolled to a given degree course for a given academic year so far. Two
sample sets of events for enrollments according to the two interpretations are
shown in Table 1; the designer will choose one or the other interpretation mainly
according to the expected workload.

5 Temporal Dimensions and Querying Scenarios

From a conceptual point of view, for every fact subject to late registrations,
at least two different temporal dimensions may be distinguished. The first one
refers to the time when events actually take place in the application domain, while
the second one refers to the time when they are perceived and recorded in the

5



Table 1. Enrollment events for the transactional (left) and the snapshot (right) facts

EnrollDate Degree AYear City Number EnrollDate Degree AYear City Number

Oct. 21, 2005 Elec. Eng. 05/06 Rome 5 Oct. 21, 2005 Elec. Eng. 05/06 Rome 5

Oct. 22, 2005 Elec. Eng. 05/06 Rome 2 Oct. 22, 2005 Elec. Eng. 05/06 Rome 7

Oct. 23, 2005 Elec. Eng. 05/06 Rome 3 Oct. 23, 2005 Elec. Eng. 05/06 Rome 10

data warehouse. In the literature on temporal databases, these two dimensions
correspond, respectively, to valid time and transaction time [2]. Note that, for
a fact that is not subject to late registrations, transaction time is implicitly
considered to coincide with valid time (the natural delay due to the refresh
interval in neglected).

While we take for granted that valid time must always be represented, since it
is a mandatory coordinate for characterizing the event, the need for representing
also transaction time depends on the nature of the expected workload. From
this point of view, three types of queries can be distinguished (the terminology
is inspired by [16]):

– Up-to-date queries, i.e., queries requiring the most recent value estimate for
each measure. An example of up-to-date query on the enrollment fact is
the one asking for the daily number of enrollments to a given degree made
during last week. In fact, this query is solved correctly by considering the
most up-to-date data available for the number of enrollments by enrollment
dates. Representing transaction time is not necessary to solve this kind of
queries, since they rely on valid time only.

– Rollback queries, i.e. queries requiring a past value estimate for each mea-
sure, as for instance the one asking for the current trend of the total number
of enrollments for each faculty as compared to last year. In order to get con-
sistent results, the comparison must be founded on registration dates rather
than enrollment dates. Thus, this kind of query requires that transaction
time is represented explicitly.

– Historical queries, i.e. queries requiring multiple value estimates for each
measure. An example of historical query is the one asking for the day-by-
day distribution of the enrollments registered overall for a given enrollment
date. Also these queries require transaction time to be represented explicitly.

6 Design solutions

In presence of late registrations, two types of design solution can be envisaged
depending on the expected workload:

– Monotemporal schema, where only valid time is modeled as a dimension.
This is the simplest solution: during each refresh cycle, as up-to-date values
become available, a new set of events are recorded, which may imply updat-
ing events recorded at previous times. The time when the events are recorded

6



is not represented, and no trace is left of past values in case of updates, so
only up-to-date queries are supported.

– Bitemporal schema, where both valid and transaction time are modeled as
dimensions. This is the most general solution, allowing for all three types
of queries to be correctly answered. On each refresh cycle, new events for
previous valid times may be added, and their registration time is traced; no
overwriting of existing events is carried out, thus no data is lost.

The monotemporal schema for the enrollment example is exactly the one
already shown in Section 3, where the only temporal dimension is EnrollDate.
When further enrollments for a past enrollment date are to be registered, the
events corresponding to that date are overwritten and the new values for mea-
sures are reported. Note that this solution can be equivalently adopted for both a
transactional and a snapshot fact, and in neither case it supports accountability.

While the monotemporal schema deserves no additional comments, since it is
the one commonly implemented for facts that either are not subject to late reg-
istrations or only require to support up-to-date queries, the bitemporal schema
requires some further clarification. In fact, two specific solutions can be devised
for a bitemporal schema, namely delta solution and consolidated solution, where
the events used to represent updates have flow and stock semantics, respectively.
These solutions are described in the following subsections.

6.1 The Delta Solution

In the delta solution:

1. each update is represented by a flow event that records a “delta” for the
fact;

2. transaction time is modeled by adding to the fact a new temporal dimension,
typically with the same grain of the temporal dimension that models the
valid time, to represent when each event was recorded;

3. up-to-date queries are answered by aggregating events on all transaction
times;

4. rollback queries at a given time t are answered by aggregating events on the
transaction times before t;

5. historical queries are answered by slicing the events based on their transac-
tion times.

This solution can easily be applied to a transactional fact: in this case, all
stored events (those initially recorded and those representing further updates)
have flow semantics. In particular, flow measures uniformly preserve their addi-
tive nature for all the events. Consider for instance the enrollment schema. If a
delta solution is adopted, the schema is enriched as follows:

FT ENROLL(EnrollDate, RegistrDate, Degree, AYear, City, Number)

where RegistrDate is the dimension added to model transaction time. Table 2
shows a possible set of events for a given city, degree, and year, including some

7



Table 2. Enrollment events in the delta solution applied to a transactional fact (events
representing updates in italics)

EnrollDate RegistrDate Degree AYear City Number

Oct. 21, 2005 Oct. 27, 2005 Elec. Eng. 05/06 Rome 5

Oct. 21, 2005 Nov. 1, 2005 Elec. Eng. 05/06 Rome 8

Oct. 21, 2005 Nov. 5, 2005 Elec. Eng. 05/06 Rome −2

Oct. 22, 2005 Oct. 27, 2005 Elec. Eng. 05/06 Rome 2

Oct. 22, 2005 Nov. 5, 2005 Elec. Eng. 05/06 Rome 4

Oct. 23, 2005 Oct. 23, 2005 Elec. Eng. 05/06 Rome 3

positive and negative updates. With reference to these sample data, in the fol-
lowing we report some simple examples of queries of the three types together
with their results, and show how they can be computed by aggregating events.

1. q1: daily number of enrollments to Electric Engineering for academic year
05/06. This up-to-date query is answered by summing up measure Number
for all registration dates related to the same enrollment dates, and returns
the following result:

EnrollDate Degree AYear City Number

Oct. 21, 2005 Elec. Eng. 05/06 Rome 11

Oct. 22, 2005 Elec. Eng. 05/06 Rome 6

Oct. 23, 2005 Elec. Eng. 05/06 Rome 3

2. q2: daily number of enrollments to Electric Engineering for academic year
05/06 as known on Nov. 2. This rollback query is answered by summing up
Number for all registration dates before Nov. 2:

EnrollDate Degree AYear City Number

Oct. 21, 2005 Elec. Eng. 05/06 Rome 13

Oct. 22, 2005 Elec. Eng. 05/06 Rome 2

Oct. 23, 2005 Elec. Eng. 05/06 Rome 3

3. q3: daily net number of registrations of enrollments to Electric Engineering
for academic year 05/06. This historical query is answered by summing up
Number for all enrollment dates:

RegistrDate Degree AYear City Number

Oct. 23, 2005 Elec. Eng. 05/06 Rome 3

Oct. 27, 2005 Elec. Eng. 05/06 Rome 7

Nov. 1, 2005 Elec. Eng. 05/06 Rome 8

Nov. 5, 2005 Elec. Eng. 05/06 Rome 2

In case of a snapshot fact where the domain events have stock semantics, the
delta solution is not necessarily the best one. See for instance Table 3, that with
reference to the inventory example seen in Section 3 shows a possible set of events
for a given week and product assuming that some data sent by local warehouses

8



Table 3. Inventory events in the delta solution applied to a snapshot fact

InvDate RegistrDate Product Warehouse Level

Jan. 7, 2006 Jan. 8, 2006 LCD TV Milan 10

Jan. 7, 2006 Jan. 12, 2006 LCD TV Milan −1

Jan. 7, 2006 Jan. 12, 2006 LCD TV Rome 5

Jan. 7, 2006 Jan. 10, 2006 LCD TV Venice 15

Jan. 7, 2006 Jan. 14, 2006 LCD TV Venice 2

are subject to corrections. In this case, up-to-date and rollback queries that
summarize the inventory level along valid time would have to be formulated
as nested queries relying on different aggregation operators. For instance, the
average monthly level for a warehouse is computed by first summing Level across
RegistrDate for each InvDate, then averaging the partial results.

We close this section by considering the particular case of facts where reg-
istrations may be delayed but events, once registered, are not further updated.
In this case accountability can be achieved, for both transactional and snapshot
facts, by adding a single temporal dimension RegistrDate that models the trans-
action time. Up-to-date queries are solved without considering transaction times,
while rollback queries require to select only the events recorded before a given
transaction time. Historical queries make no sense in this context, since each
event has only one logical “version”. As a matter of fact, the solution adopted
can be considered as a special case of delta solution where no update events are
to be registered.

6.2 The Consolidated Solution

In the consolidated solution:

1. each update is represented by a stock event that records the consolidated
version of the fact;

2. transaction time is modeled by adding to the fact two new temporal dimen-
sions, used as timestamps to mark the time interval during which each event
was current within the data warehouse (currency interval);

3. up-to-date queries are answered by slicing the events that are current today
(those whose currency interval is still open);

4. rollback queries at a given time t are answered by slicing the events that
were current at t (those whose currency interval includes t);

5. historical queries are answered by slicing the events based on their transac-
tion times.

In the inventory example, if a consolidated solution is adopted, the schema
is enriched as follows:

FT INVENTORY(InvDate, CurrencyStart, CurrencyEnd, Product, Warehouse, Level)

9



Table 4. Inventory events in the consolidated solution applied to a snapshot fact

InvDate CurrencyStart CurrencyEnd Product Warehouse Level

Jan. 7, 2006 Jan. 8, 2006 Jan. 11, 2006 LCD TV Milan 10

Jan. 7, 2006 Jan. 12, 2006 – LCD TV Milan 9

Jan. 7, 2006 Jan. 12, 2006 – LCD TV Rome 5

Jan. 7, 2006 Jan. 10, 2006 Jan. 13, 2006 LCD TV Venice 15

Jan. 7, 2006 Jan. 14, 2006 – LCD TV Venice 17

Table 5. Summary of the possible solutions (UQ and HQ stand for up-to-date and
historical queries, respectively)

transactional fact snapshot fact

flow domain events flow domain events stock domain events

monotemporal schema
good but only supports
UQ

good if no updates, else
not recomm.

good but only supports
UQ

delta sol. – no upd. good good good

delta sol. – with upd. good
not recomm. due to up-
date propagation

fair due to nesting

consolidated solution
good but overhead on
HQ

not recomm. due to up-
date propagation

good but overhead on
HQ

Table 4 shows the consolidated solution for the same set of events reported in
Table 3. An example of up-to-date query on these data is “find the total number
of LCDs available on Jan. 7”, which returns 31. On the other hand, a rollback
query is “find the total number of LCDs available on Jan. 7, as known on Jan.
10”, which returns 25. Finally, a historical query is “find the fluctuation on the
level of Jan. 7 for each warehouse”, which requires to progressively compute
the differences between subsequent events and returns −1, 0, and 2 for Milan,
Rome, and Venice respectively. Thus, while up-to-date and rollback queries are
very simply answered, historical queries may ask for some computation.

Similarly, for a transactional fact, applying the consolidated solution is possi-
ble though answering historical queries may be computationally more expensive
than with a delta solution.

7 Conclusion

In this paper we have raised the problem of late registrations, meant as retro-
spective registrations of events in a data warehouse, and we have shown how
conventional design solutions, that only take valid time into account, may fail to
provide query accountability and consistency. Then, we have introduced some
alternative design solutions that overcome this problem by modeling transaction
time as an additional dimension of the fact, and we have discussed their appli-
cability depending on the semantics of events. Table 5 summarizes the results
obtained. Most noticeably, using a snapshot fact when domain events have flow
semantics is not recommendable in case of updates, since they should then be

10



propagated. Besides, for a transactional fact all solutions are fine, though the
delta one is preferable since it adds no overhead for historical queries. Conversely,
for a snapshot fact the consolidated solution is preferable since aggregation nest-
ing is not required.

The overhead induced by the proposed solutions on the query response time
and on the storage space obviously depends on the characteristics of the appli-
cation domain and on the actual workload. Frequent updates determine a signif-
icant increase in the fact table size, but this may be due to a wrong choice of the
designer, who promoted early recording of events that are not stable enough to
be significant for decision support. The increase in the query response time may
be contained by a proper use of materialized views and indexes: a materialized
view aggregating events on all transaction times cuts down the time for answer-
ing up-to-date queries in the delta solution, while an index on transaction time
enables efficient slicing of the events.

References

1. Kimball, R.: The data warehouse toolkit. Wiley Computer Publishing (1996)
2. Jensen, C., Clifford, J., Elmasri, R., Gadia, S.K., Hayes, P.J., Jajodia, S.: A

consensus glossary of temporal database concepts. ACM SIGMOD Record 23(1)
(1994) 52–64

3. Devlin, B.: Managing time in the data warehouse. InfoDB 11(1) (1997) 7–12
4. Letz, C., Henn, E., Vossen, G.: Consistency in data warehouse dimensions. In:

Proc. IDEAS. (2002) 224–232
5. Yang, J.: Temporal data warehousing. PhD thesis, Stanford University (2001)
6. Bȩbel, B., Eder, J., Koncilia, C., Morzy, T., Wrembel, R.: Creation and manage-

ment of versions in multiversion data warehouse. In: Proc. SAC, Nicosia, Cyprus
(2004) 717–723

7. Blaschka, M., Sapia, C., Höfling, G.: On schema evolution in multidimensional
databases. In: Proc. DaWaK. (1999) 153–164

8. Eder, J., Koncilia, C., Morzy, T.: The COMET metamodel for temporal data
warehouses. In: Proc. CAiSE. (2002) 83–99

9. Golfarelli, M., Lechtenbörger, J., Rizzi, S., Vossen, G.: Schema versioning in data
warehouses: Enabling cross-version querying via schema augmentation. Data and
Knowledge Engineering (2006, To appear)

10. Quix, C.: Repository support for data warehouse evolution. In: Proc. DMDW.
(1999)

11. Pedersen, T.B., Jensen, C.: Research issues in clinical data warehousing. In: Proc.
SSDBM, Capri, Italy (1998) 43–52

12. Abelló, A., Mart́ın, C.: The data warehouse: an object-oriented temporal database.
In: Proc. JISBD 2003, Alicante, Spain (2003) 675–684

13. Abelló, A., Mart́ın, C.: A bitemporal storage structure for a corporate data ware-
house. In: Proc. ICEIS. (2003) 177–183

14. Bruckner, R., Tjoa, A.: Capturing delays and valid times in data warehouses -
towards timely consistent analyses. Journ. Intell. Inf. Syst. 19(2) (2002) 169–190

15. Lenz, H.J., Shoshani, A.: Summarizability in OLAP and statistical databases. In:
Proc. SSDBM. (1997) 132–143

16. Kim, J.S., Kim, M.H.: On effective data clustering in bitemporal databases. In:
Proc. TIME. (1997) 54–61

11


