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Abstract. View materialization is recognized to be one of the most effective 
ways to increase the Data Warehouse performance; nevertheless, due to the 
computational complexity of the techniques aimed at choosing the best set of 
views to be materialized, this task is mainly carried out manually when large 
workloads are involved. In this paper we propose a set of statistical indicators 
that can be used by the designer to characterize the workload of the Data 
Warehouse, thus driving the logical and physical optimization tasks; 
furthermore we propose a clustering algorithm that allows the cardinality of the 
workload to be reduced and uses these indicators for measuring the quality of 
the reduced workload. Using the reduced workload as the input to a view 
materialization algorithm allows large workloads to be efficiently handled. 

1 Introduction 

During the design of a data warehouse (DW), the phases aimed at improving the 
system performance are mainly the logical and physical ones. One of the most 
effective ways to achieve this goal during logical design is view materialization. The 
so-called view materialization problem consists of choosing the best subset of the 
possible (candidate) views to be precomputed and stored in the database while 
respecting a set of system and user constraints (see [8] for a survey). Even if the most 
important constraint is the disk space available for storing aggregated data, the quality 
of the result is usually measured in terms of the number of disk pages necessary to 
answer a given workload.  

Despite the efforts made by research in the last years, view materialization remains 
a task whose success depends on the experience of the designer that, adopting rules of 
thumb and applying the trial-and-error approach, may lead to acceptable solutions. 
Unlike other issues in the Data Warehouse (DW) field, understanding why the large 
set of techniques available in the literature have not been engineered and included in 
some commercial tools is fundamental to solving the problem. Of course the main 
reason is the computational complexity of view materialization that makes all the 
approaches proposed unsuitable for workloads larger than about forty queries. 
Unfortunately, real workloads are much larger and are not usually available during the 
DW design but only when the system is on-line. Nevertheless, the designer can 
estimate the core of the workload at design phase but such a rough approximation will 
lead to a largely sub-optimal solution.  



We believe that the best solution is to carry out a rough optimization at design time 
and to refine the solution by tuning it, manually or automatically, when the system is 
on-line on the base of the real workload. The main difficulty with this approach is the 
huge size of the workload that cannot be handled by the algorithms known in the 
literature. In this context the contribution of the paper is twofold: firstly we propose a 
technique for profiling large workloads that can be obtained from the log file 
produced by the DBMS when the DW is on line. The statistical indicators obtained 
can be used by the designer to characterize the DW workload thus driving the logical 
and physical optimization tasks. The second contribution concerns a clustering 
algorithm that allows the cardinality of the workload to be reduced and that uses the 
indicators in order to measure the quality of the reduced workload. Using the reduced 
workload as the input to a view materialization algorithm allows large workloads to 
be efficiently handled. Since clustering is an independent way of preprocessing, all 
the algorithms presented in the literature can be adopted during the views selection 
phase. Figure 1 shows the framework we assume for our approach: OLAP 
applications generate SQL queries whose logs are periodically elaborated to 
determine the statistical indicators and a clustered workload that can be handled by a 
view materialization algorithm that produces new patterns to be materialized.  

 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Overall framework for the view materialization process 

To the best of our knowledge only few works directly faced the workload size 
problem; in particular, in [5] the authors proposed a polynomial time algorithm that 
explores only a subset of the candidate views and delivers a solution whose quality is 
comparable with other techniques that run in exponential time. In [1] the authors 
propose a heuristic reduction technique that is based on the functional dependencies 
between attributes and excludes from the search space those views that are “similar” 
to other ones already considered. With respect to ours, this approach does not produce 
any representative workload to be used for further optimizations. 

Clustering of queries in the field of DWs has been recently used to reduce the 
complexity of the plan selection task [2]: each cluster has a representative for whom 
the execution plan, as determined by the optimizer, is persistently stored. Here the 
concept of similarity is based on a complex set of features that it is necessary to 
encode when different queries can be efficiently solved using the same execution 
plan. This idea has been implicitly used in several previous works where a global 
optimization plan was obtained given a set of queries [7].  
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The rest of the paper is organized as follows: Section 2 presents the necessary 
background, Section 3 defines the statistical indicators for workload profiling; Section 
4 presents the algorithm for query clustering while in Section 5 a set of experiments, 
aimed at proving its effectiveness, are reported. Finally in Section 6 the conclusions 
are drawn. 

2 Background 

It is recognized that DWs lean on the multidimensional model to represent data, 
meaning that indicators that measure a fact of interest are organized according a set of 
dimensions of analysis;   for example, sales can be measured by the quantity 
sold and the price of each sale of a given product that took place in a given store 
and on a given day. Each dimension is usually related to a set of attributes describing 
it at different aggregation levels; the attributes are organized in a hierarchy defined 
according to a set of functional dependencies. For example a product can be 
characterized by the attributes PName, Type, Category and Brand among which 
the following functional dependencies are defined: PName→Type, 
Type→Category and PName→Brand; on the other hand, stores can be described 
by their geographical and commercial location: SName→City, City→Country, 
SName→CommArea, CommArea→CommZone. 

On relational solutions, the multidimensional nature of data is implemented on the 
logical model by adopting the so-called star scheme, composed by a set of, fully 
denormalized, dimension tables, one for each dimension of analysis, and a fact table 
whose primary key is obtained by composing the foreign keys referencing the 
dimension tables. The most common class of queries used to extract information from 
a star schema are GPSJ [3] that consists of a selection, over a generalized projection 
over a selection over a join between the fact table and the dimension table involved. 

It is easy to understand that grouping heavily contributes to the global query cost 
and that such a cost can be reduced precomputing (materializing) that aggregated 
information that is useful to answer a given workload. Unfortunately, in real 
applications, the size of such views never fits the constraint  given by the available 
disk space and it is very hard to choose the best subset to be actually materialized. 
When working on a single fact scheme and assuming that all the measures contained 
in the elemental fact table are replicated a view is completely defined by its 
aggregation level. 

Definition 1 The pattern of a view consists of a set of dimension table attributes such 
that no functional dependency exists between attributes in the same pattern.  

Possible patterns for the sales fact are: P1 = {Month, Country, Category}, P2 

= {Year, Sname}, P3 = {Brand}. In the following we will use indifferently the 
terms pattern and view and we will refer to the query pattern as the coarsest pattern 
that can be used to answer the query. 

Definition 2 Given two views Vi, Vj with patterns Pi, Pj respectively, we say that Vi 
can be derived from Vj (Vi ≤ Vj) if the data in Vi can be calculated from the data in Vj. 



Derivability determines a partial-order relationship between the views, and thus 
between patterns, of a fact scheme. Such partial-order can be represented by the so-
called multidimensional lattice [1] whose nodes are the patterns and whose arcs show 
a direct derivability relationship between patterns.  

Definition 3 We denote with Pi ⊕  Pj the least upper bound (ancestor) of two 
patterns in the multidimensional lattice. 

In other words the ancestor of two patterns corresponds to the coarsest one from 
which both can be derived. 

Given a set of queries the ancestor operator can be used to determine the set of 
views that are potentially useful to reduce the workload cost (candidate views). The 
candidate set can be obtained, starting from the workload queries, by iteratively 
adding to the set the ancestors of each couple of patterns until a fixed point is reached. 
Most of the approaches to view materialization try to determine first  the candidate 
views, and to choose the best subset that fits the constraints later. Both problems have 
an exponential complexity. 

3 Profiling the workload 

Profiling means determining a set of indicators that captures the workload features 
that have an impact on the effectiveness of different optimization techniques. In 
particular, we are interested in those relevant to the problem of view materialization 
and that help the designer to answer queries like: “How suitable to materialization is 
the workload ?”, “How much space do I need to obtain good results ?”. 

In the following we propose four indicators that have proved to properly capture all 
the relevant aspects and that can be used as guidance by the designer that manually 
tunes the DW or as input to an optimization algorithm for a materialized view section. 
All the indicators are based on the concept of cardinality of the views associated to a 
given pattern that can be estimated knowing the data volume of the fact scheme that 
we assume to contain the cardinality of the base fact table and the number of distinct 
values of each attribute in the dimension tables. The cardinality of an aggregate view 
can be estimated using Cardenas’ formula. In our case the objects are the tuples in the 
elemental fact table with pattern P0 (whose number |P0| is assumed to be known) 
while the number of buckets is the maximum number of tuples, |P|Max, that can be 
stored in a view with pattern P and that can be easily calculated given the cardinalities 
of the attributes belonging to the pattern, thus 

Card(P)= Φ(|P|Max ,|I0|) (1) 

3.1 Aggregation level of the workload 

The aggregation level of a pattern P is calculated as: 
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Agg(P) ranges between  [0,1[, the higher the values the coarser the pattern. The 
average aggregation level (AAL) of the full workload W ={Q1,…Qn} can be 
calculated as  
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where Pi is the pattern of query Qi. 
In order to partially capture how the queries are distributed at different aggregation 
levels we also include the aggregation level standard deviation (ALSD), which is the 
standard deviation for AAL: 
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AAL and ALSD characterize to what extent the information required by the users is 
aggregated and express the willingness of the workload to be optimized using 
materialized views. Intuitively, workloads with high values of AAL will be efficiently 
optimized using materialized views since they determine a strong reduction of the 
number of tuples to be read. Furthermore, the limited size of such tables allows a 
higher number of views to be materialized. On the other hand, a low value for ALSD 
denotes that most of the views share the same aggregation level further improving the 
usefulness of view materialization. 

3.2 Skewness of the workload 

Measuring the aggregation level is not sufficient to characterize the workload; in fact 
workloads with similar values of AAL and ALSD can behave differently, with respect 
to materialization, depending on the attributes involved in the queries. Consider for 
example two workloads W1 ={Q1, Q2} and W2 ={Q3, Q4} formulated on the Sales fact 
and the pattern of their queries:  

− P1 = {Category, City}   Card(P1) = 2100 
− P2 = {Type, Country}  Card(P2) = 1450 
− P3 = {Category, Country}   Card(P3) = 380 
− P4 = {Brand, CommZone}   Card(P4) = 680 

Materializing a single view to answer both the queries in the workload is much more 
useful for W1, than for W2 since in the first case the ancestor is very “close” to the 
queries (P1⊕  P2={Type, City}) and still coarse, while in the second case it is “far” 
and fine (P3⊕  P4={SName, PName}). 

This difference is captured by the distance between the two patterns that we 
calculate as: 

Dist(Pi, Pj) = Agg(Pi) + Agg(Pj) - 2 Agg(Pi ⊕  Pj) (5) 



Dist(Pi, Pj) is calculated in terms of distance of Pi and Pj from their ancestor that is 
the point of the multidimensional lattice closest to both the views. Figure 2 shows two 
different situations on the same multidimensional lattice: even if the aggregation level 
of the patterns is similar, the distance between each couple change significantly. 
The average skewness (ASK) of the full workload W ={Q1,…Qn} can be calculated as  
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where Pz is the pattern of query Qz. ASK ranges in [0,2[1 . Also for the skewness 
indicator it is useful to calculate the standard deviation (Skewness Standard 
Deviation, SKSD) in order to evaluate how the distances between queries are 
distributed with respect to their mean value: 
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Intuitively, workloads with low values for ASK will be efficiently optimized using 
materialized views since the similarity of the query patterns makes it possible to 
materialize few views to optimize several queries.  
 
 
 

 
 
 
 
 
 
 

Fig. 2. Distance between close and far patterns 

4 Clustering of queries 

Clustering is one of the most common techniques for classification of features into 
groups. Several algorithms have been proposed in the literature (see [4] for a survey) 
each suitable for a specific class of problems. In this paper we adopted the 
hierarchical approach that recursively agglomerates the two most similar clusters 
forming a dendogram whose creation can be stopped at different levels to yield 
different clustering of data, each related to a different level of similarity that will be 
evaluated using the statistical indicators introduced so far. The initial clusters contain 
a single query of the workload that represent them. At each step the algorithm looks 

                                                           
1 The maximum value for ASK depends on the cardinalities of the attributes and on the 

functional dependencies defined on the hierarchies, thus it cannot be defined without 
considering the specific star schema.  
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for the two most similar clusters that are collapsed forming a new one that is 
represented by the query whose pattern is the ancestor of their representative. Figure 3 
shows the output of this process. With a little abuse of terminology we write qx⊕ qy 
meaning that the ancestor operator is applied to the pattern of the queries. 
  
 
 
 
 
 
 
 

 

 

Fig. 3. A possible dendogram for a workload with 6 queries 

Similarity between clusters is expressed in terms of the distance, as defined in Section 
3.2, between the patterns of their representatives. Each cluster is represented by the 
ancestor of all the queries belonging to it and is labeled with the sum of the 
frequencies of its queries. This simple, but effective, solution reflects the criteria 
adopted by the view materialization algorithms that rely on the ancestor concept when 
choosing one view to answer several queries. The main drawback here is that the 
value of AAL tends to decrease when the initial workload is strongly aggregated. 
Nevertheless the ancestor solution is the only one ensuring that the cluster 
representative effectively characterizes its queries with respect to materialization (i.e. 
all the queries in the cluster can be answered on a view on which the representative 
can also be answered). Adding new queries to a cluster inevitably induces 
heterogeneity in the aggregation level of its queries thus reducing its capability to 
represent all of them. Given a clustering Wc ={C1,…Cm}, we measure the 
compactness of the clusters in terms of similarity of the aggregation levels of the 
queries in each cluster as: 
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where ALSDi is the standard deviation of the aggregation level for queries in the 
cluster Ci. The lower IntraALSD  the closer the queries in the clusters. 

As to the behavior of ASK, it tends to increase when the number of clusters 
decreases since the closer queries are collapsed earlier than the far ones. While this is 
an obvious effect of clustering a second relevant measure of the compactness of the 
clusters in Wc ={C1,…Cm} can be expressed in terms of internal skewness: 

c1=q1 c2=q2 c3=q3 c4=q4 c5=q5 c6=q6 

c7=q1⊕ q2 

c8=q1⊕ q2⊕ q3 

c9=q4⊕ q5⊕ q6 

c10=q1⊕ q2⊕ q3⊕ q4⊕ q5⊕ q6 
 

c7=q4⊕ q5 
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where ASKi is the skewness of the queries in the cluster Ci. The lower IntraASK the 
closer the queries in the clusters. 

The ratio between the statistical indicators and the corresponding intra cluster ones 
can be used to evaluate how well the clustering models the original workload; in 
particular we adopted this technique to define when the clustering process must be 
stopped; the stop rule we adopt is as follows: 

Stop if SKAL T
IntraASK

ASK
T

IntraAAL

AAL >> ∨  

In our tests both TAL and TSK have been set to 5. 

5 Tests and discussion 

In this section we present four different tests aimed at proving the effectiveness of 
both profiling and clustering.  The tests have been carried out on the LINEITEM fact 
scheme described in the TPC-H/R benchmark [9] using a set of generated workloads. 
Since selections are rarely take into account by view materialization algorithms our 
queries do not present any selection clause. As to the materialization algorithm, we 
adopted the classic one in the literature proposed by Baralis et al. [1]; the algorithm 
first determines the set of candidate views and then heuristically chooses the best 
subset that fits given space constraints. Splitting the process into two phases allows us 
to estimate both the difficulty of the problem, that we measure in terms of the number 
of candidate views, and the effectiveness of materialization that is calculated in terms 
of the number of disk pages saved by materialization. The cost function we adopted 
computes the cost of a query Q on  a star schema S composed by a fact table FT and a 
set {DT1,…, DTn} of dimension tables as 
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where Size(  ) function returns the size of a table/index expressed in disk pages, 
Dim(Q) returns the indexes of the dimension tables involved in Q and PKi  is the 
primary index on DTi. This cost function assumes the execution plan that is adopted 
by Redbrick 6.0 when no select conditions are present in a query on a star schema. 

5.1 Workload features fitting  

The first test shows that the statistical indicators proposed in Section 3 effectively 
summarize the features of a workload. Four workloads, each made up of 20 queries, 
have been generated with different values for the indicators. Table 1 reports the value 
of the parameters and the resulting number of candidate views that confirms the 
considerations made in Section 3. The complexity of the problem mainly depends on 
the value of the ASK and is more slightly influenced by AAL. The simplest workloads 



to be elaborated will be those with highly aggregated queries with similar patterns, 
while the most complex will be those with very different patterns with a low 
aggregation level. It should be noted that on increasing the size of the worklfoads, 
those with a “nice” profile still perform well, while the others quickly become too 
complex. For example workloads WKL5, WKL6, whose profile follows those of 
WKL1 and WKL4  respectively, in Table 1 contains 30 queries:  while the number of 
candidate views remains low for WKL5, it explodes for WKL6. Actually, we stopped 
the algorithm after two days of computation on a PENTIUM IV CPU (1GHz). The 
profile is also useful to evaluate how well the workload will behave with respect to 
view materialization. Figure 4.a shows that, regardless of the difficulty of the 
problems, workloads with high values of  AAL are strongly optimized even when a 
limited disk space is available for storing materialized views.  This behavior is 
induced by the dimension, and thus by the number, of the materialized views that fits 
the space constraint as it can be verified in Figure 4.b. 

Table 1. Number of candidate views for workloads with different profiles 

Name AAL ALSD ASK SKSD N. Candidate views 
WKL1 0.835 0.307 0.348 0.393 97 
WKL2 0.186 0.245 0.327 0.269 124 
WKL3 0.790 0.278 0.810 0.391 596 
WKL4 0.384 0.153 0.751 0.216 868 
WKL5 0.884 0.297 0.316 0.371 99 
WKL6 0.352 0.276 0.668 0.354 > 36158 
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Fig. 4. Cost of the workloads (a) and number of materialized views (b) on varying the disk 
space constraint for the workloads in Table 1 

5.2 Clustering suboptimality 

The second test is aimed at proving that clustering produces a good approximation of 
the input workload, meaning that applying view materialization to the original and 
clustered workload does not induce a too heavy suboptimality. With reference to the 
workloads in Table 1, Table 2 shows how change the behavior and the effectiveness 
of the view materialization algorithm changes for an increasing level of clustering. It 

WKL2 WKL1 WKL3 WKL4 

(a) (b) 



should be noted that the number of candidate views can be strongly reduced inducing, 
in most cases, a limited suboptimality. By comparing the suboptimality percentages 
with the statistical indicator trends presented in Figure 5, it is clear that suboptimality 
arises earlier for workloads where IntraASDL and IntraASK increase earlier.  

5.3 Handling large workloads 

When workloads with hundred of queries are considered it is not possible to measure 
the suboptimality induced by the clustered solution since the original workloads 
cannot be directly optimized. On the other hand, it is still possible to compare the 
increase of the performance with respect to the case with no materialized views and it 
is also interesting to show how the workload costs change depending on the number 
of queries included in the clustered workload and how the cost is related to the 
statistical indicators. 

Table 2. Effects of clustering on the view materialization algorithm applied to workload in 
Table 1 

WKL #. Cluster # Cand.Views #. Mat.Views % SubOpt Stop rule at 
15 90 12 0.001 
10 68 7 0.308 WKL1 
5 25 3 40.511 

3 

15 79 2 0.000 
10 38 2 2.561 WKL2 

5 6 2 4.564 

6 

15 549 10 1.186 
10 156 7 22.146 WKL3 

5 16 4 65.407 

7 

15 321 2 0.0 
10 129 2 0.0 WKL4 

5 17 2 0.0 

4 

 
Table 3 reports the view materialization results for two workloads, WKL 7 
(AAL:0.915, ALSD:0.266, ASK: 0.209, SKSD: 0.398) - WKL 8 (AAL: 0.377, 
ALSD: 0.250, ASK: 0.738, SKSD: 0.345), containing 200 queries. The data in the 
table and the graphs in Figure 6 confirm the behaviors deduced from previous tests: 
the effectiveness of view materialization is higher for workloads with high value of 
AAL and low value of ASK. Also the capability of the clustering algorithm to capture 
the features of the original workload depends on its profile, in fact workloads with 
higher values of ASK require more queries (7 for WKL7 vs. 20 for WKL8) in the 
clustered workload to effectively model the original one. On the other hand it is not 
useful to excessively increase the clustered workload cardinality since the 
performance improvement is much lower than the increase of the computation time. 
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Fig. 5. Trends of the statistical indicators for increasing levels of clustering and for different 
workloads. 

Table 3. Effects of clustering on the view materialization algorithm applied to workload in 
Table 1 

WKL 
#. 

Cluster 
# 

Cand.Views 
#. 

Mat.Views 
%Cost 

Reduction 
Comp. Time 

(sec.) 
Stop rule 

at 
30 12506 17 90.6 43984 
20 4744 15 89.0 439 
10 384 9 83.3 39 

WKL7 

7 64 6 38.9 24 

6 

30 17579 5 19.1 78427 
20 2125 5 17.8 304 WKL8 
10 129 2 2.4 25 

19 

6 Conclusions 

In this paper we have discussed two techniques that make it possible to carry out view 
materialization when the high cardinality of the workload does not allow the problem 
to be faced directly. In particular, the set of statistical indicators proposed have proved 
to capture those workload features that are relevant to the view materialization 
problem, thus driving the designer choices. The clustering algorithm allows large 
workloads to be handled by automatic techniques for view materialization since it 
reduces its cardinality slightly corrupting the original characteristics. We believe that 
the use of the information carried by the statistical indicators we proposed can be 

AAL ASK IntraAAL IntraASK 

WKL1 WKL2 

WKL3 WKL4 



profitably used to increase the effectiveness of the optimization algorithms used in 
both logical and physical design. For example, in [6] the authors propose a technique 
for splitting a given quantity of disk space into two parts used for creating views and 
indexes respectively. Since the technique takes account of only information relative to 
a single query our indicators can improve the solution by providing the bent of the 
workload to be optimized by indexing or view materializing. 
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Fig. 6. Trends of the statistical indicators for increasing levels of clustering and for different 
workloads. 
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