
Handling large workloads by profiling and clustering

Matteo Golfarelli

DEIS - University of Bologna
40136 Bologna - Italy
golfare@csr.unibo.it

Abstract. View materialization is recognized to be one of the most effective
ways to increase the Data Warehouse performance; nevertheless, due to the
computational complexity of the techniques aimed at choosing the best set of
views to be materialized, this task is mainly carried out manually when large
workloads are involved. In this paper we propose a set of statistical indicators
that can be used by the designer to characterize the workload of the Data
Warehouse, thus driving the logical and physical optimization tasks;
furthermore we propose a clustering algorithm that allows the cardinality of the
workload to be reduced and uses these indicators for measuring the quality of
the reduced workload. Using the reduced workload as the input to a view
materialization algorithm allows large workloads to be efficiently handled.

1 Introduction

During the design of a data warehouse (DW), the phases aimed at improving the
system performance are mainly the logical and physical ones. One of the most
effective ways to achieve this goal during logical design is view materialization. The
so-called view materialization problem consists of choosing the best subset of the
possible (candidate) views to be precomputed and stored in the database while
respecting a set of system and user constraints (see [8] for a survey). Even if the most
important constraint is the disk space available for storing aggregated data, the quality
of the result is usually measured in terms of the number of disk pages necessary to
answer a given workload.

Despite the efforts made by research in the last years, view materialization remains
a task whose success depends on the experience of the designer that, adopting rules of
thumb and applying the trial-and-error approach, may lead to acceptable solutions.
Unlike other issues in the Data Warehouse (DW) field, understanding why the large
set of techniques available in the literature have not been engineered and included in
some commercial tools is fundamental to solving the problem. Of course the main
reason is the computational complexity of view materialization that makes all the
approaches proposed unsuitable for workloads larger than about forty queries.
Unfortunately, real workloads are much larger and are not usually available during the
DW design but only when the system is on-line. Nevertheless, the designer can
estimate the core of the workload at design phase but such a rough approximation will
lead to a largely sub-optimal solution.

We believe that the best solution is to carry out a rough optimization at design time
and to refine the solution by tuning it, manually or automatically, when the system is
on-line on the base of the real workload. The main difficulty with this approach is the
huge size of the workload that cannot be handled by the algorithms known in the
literature. In this context the contribution of the paper is twofold: firstly we propose a
technique for profiling large workloads that can be obtained from the log file
produced by the DBMS when the DW is on line. The statistical indicators obtained
can be used by the designer to characterize the DW workload thus driving the logical
and physical optimization tasks. The second contribution concerns a clustering
algorithm that allows the cardinality of the workload to be reduced and that uses the
indicators in order to measure the quality of the reduced workload. Using the reduced
workload as the input to a view materialization algorithm allows large workloads to
be efficiently handled. Since clustering is an independent way of preprocessing, all
the algorithms presented in the literature can be adopted during the views selection
phase. Figure 1 shows the framework we assume for our approach: OLAP
applications generate SQL queries whose logs are periodically elaborated to
determine the statistical indicators and a clustered workload that can be handled by a
view materialization algorithm that produces new patterns to be materialized.

Fig. 1. Overall framework for the view materialization process

To the best of our knowledge only few works directly faced the workload size
problem; in particular, in [5] the authors proposed a polynomial time algorithm that
explores only a subset of the candidate views and delivers a solution whose quality is
comparable with other techniques that run in exponential time. In [1] the authors
propose a heuristic reduction technique that is based on the functional dependencies
between attributes and excludes from the search space those views that are “similar”
to other ones already considered. With respect to ours, this approach does not produce
any representative workload to be used for further optimizations.

Clustering of queries in the field of DWs has been recently used to reduce the
complexity of the plan selection task [2]: each cluster has a representative for whom
the execution plan, as determined by the optimizer, is persistently stored. Here the
concept of similarity is based on a complex set of features that it is necessary to
encode when different queries can be efficiently solved using the same execution
plan. This idea has been implicitly used in several previous works where a global
optimization plan was obtained given a set of queries [7].

DW

RDBMS

OLAP
APPLICATIONS

Profiling &
Clustering

View
materialization

Queries Data

Queries Data

Log
data

Clustered
workload

Statistical
indicators

Views

Data
volume

The rest of the paper is organized as follows: Section 2 presents the necessary
background, Section 3 defines the statistical indicators for workload profiling; Section
4 presents the algorithm for query clustering while in Section 5 a set of experiments,
aimed at proving its effectiveness, are reported. Finally in Section 6 the conclusions
are drawn.

2 Background

It is recognized that DWs lean on the multidimensional model to represent data,
meaning that indicators that measure a fact of interest are organized according a set of
dimensions of analysis; for example, sales can be measured by the quantity
sold and the price of each sale of a given product that took place in a given store
and on a given day. Each dimension is usually related to a set of attributes describing
it at different aggregation levels; the attributes are organized in a hierarchy defined
according to a set of functional dependencies. For example a product can be
characterized by the attributes PName, Type, Category and Brand among which
the following functional dependencies are defined: PName→Type,
Type→Category and PName→Brand; on the other hand, stores can be described
by their geographical and commercial location: SName→City, City→Country,
SName→CommArea, CommArea→CommZone.

On relational solutions, the multidimensional nature of data is implemented on the
logical model by adopting the so-called star scheme, composed by a set of, fully
denormalized, dimension tables, one for each dimension of analysis, and a fact table
whose primary key is obtained by composing the foreign keys referencing the
dimension tables. The most common class of queries used to extract information from
a star schema are GPSJ [3] that consists of a selection, over a generalized projection
over a selection over a join between the fact table and the dimension table involved.

It is easy to understand that grouping heavily contributes to the global query cost
and that such a cost can be reduced precomputing (materializing) that aggregated
information that is useful to answer a given workload. Unfortunately, in real
applications, the size of such views never fits the constraint given by the available
disk space and it is very hard to choose the best subset to be actually materialized.
When working on a single fact scheme and assuming that all the measures contained
in the elemental fact table are replicated a view is completely defined by its
aggregation level.

Definition 1 The pattern of a view consists of a set of dimension table attributes such
that no functional dependency exists between attributes in the same pattern.

Possible patterns for the sales fact are: P1 = {Month, Country, Category}, P2

= {Year, Sname}, P3 = {Brand}. In the following we will use indifferently the
terms pattern and view and we will refer to the query pattern as the coarsest pattern
that can be used to answer the query.

Definition 2 Given two views Vi, Vj with patterns Pi, Pj respectively, we say that Vi
can be derived from Vj (Vi ≤ Vj) if the data in Vi can be calculated from the data in Vj.

Derivability determines a partial-order relationship between the views, and thus
between patterns, of a fact scheme. Such partial-order can be represented by the so-
called multidimensional lattice [1] whose nodes are the patterns and whose arcs show
a direct derivability relationship between patterns.

Definition 3 We denote with Pi ⊕ Pj the least upper bound (ancestor) of two
patterns in the multidimensional lattice.

In other words the ancestor of two patterns corresponds to the coarsest one from
which both can be derived.

Given a set of queries the ancestor operator can be used to determine the set of
views that are potentially useful to reduce the workload cost (candidate views). The
candidate set can be obtained, starting from the workload queries, by iteratively
adding to the set the ancestors of each couple of patterns until a fixed point is reached.
Most of the approaches to view materialization try to determine first the candidate
views, and to choose the best subset that fits the constraints later. Both problems have
an exponential complexity.

3 Profiling the workload

Profiling means determining a set of indicators that captures the workload features
that have an impact on the effectiveness of different optimization techniques. In
particular, we are interested in those relevant to the problem of view materialization
and that help the designer to answer queries like: “How suitable to materialization is
the workload ?”, “How much space do I need to obtain good results ?”.

In the following we propose four indicators that have proved to properly capture all
the relevant aspects and that can be used as guidance by the designer that manually
tunes the DW or as input to an optimization algorithm for a materialized view section.
All the indicators are based on the concept of cardinality of the views associated to a
given pattern that can be estimated knowing the data volume of the fact scheme that
we assume to contain the cardinality of the base fact table and the number of distinct
values of each attribute in the dimension tables. The cardinality of an aggregate view
can be estimated using Cardenas’ formula. In our case the objects are the tuples in the
elemental fact table with pattern P0 (whose number |P0| is assumed to be known)
while the number of buckets is the maximum number of tuples, |P|Max, that can be
stored in a view with pattern P and that can be easily calculated given the cardinalities
of the attributes belonging to the pattern, thus

Card(P)= Φ(|P|Max ,|I0|) (1)

3.1 Aggregation level of the workload

The aggregation level of a pattern P is calculated as:

||

)(
1)(

0P

PCard
PAgg −=

(2)

Agg(P) ranges between [0,1[, the higher the values the coarser the pattern. The
average aggregation level (AAL) of the full workload W ={Q1,…Qn} can be
calculated as

∑
=

=
n

i
iPAgg

n
AAL

1
)(

1

(3)

where Pi is the pattern of query Qi.
In order to partially capture how the queries are distributed at different aggregation
levels we also include the aggregation level standard deviation (ALSD), which is the
standard deviation for AAL:

()

n

AALPAgg

ALSD

n

i
i∑

=
−

= 1

2)(

(4)

AAL and ALSD characterize to what extent the information required by the users is
aggregated and express the willingness of the workload to be optimized using
materialized views. Intuitively, workloads with high values of AAL will be efficiently
optimized using materialized views since they determine a strong reduction of the
number of tuples to be read. Furthermore, the limited size of such tables allows a
higher number of views to be materialized. On the other hand, a low value for ALSD
denotes that most of the views share the same aggregation level further improving the
usefulness of view materialization.

3.2 Skewness of the workload

Measuring the aggregation level is not sufficient to characterize the workload; in fact
workloads with similar values of AAL and ALSD can behave differently, with respect
to materialization, depending on the attributes involved in the queries. Consider for
example two workloads W1 ={Q1, Q2} and W2 ={Q3, Q4} formulated on the Sales fact
and the pattern of their queries:

− P1 = {Category, City} Card(P1) = 2100
− P2 = {Type, Country} Card(P2) = 1450
− P3 = {Category, Country} Card(P3) = 380
− P4 = {Brand, CommZone} Card(P4) = 680

Materializing a single view to answer both the queries in the workload is much more
useful for W1, than for W2 since in the first case the ancestor is very “close” to the
queries (P1⊕ P2={Type, City}) and still coarse, while in the second case it is “far”
and fine (P3⊕ P4={SName, PName}).

This difference is captured by the distance between the two patterns that we
calculate as:

Dist(Pi, Pj) = Agg(Pi) + Agg(Pj) - 2 Agg(Pi ⊕ Pj) (5)

Dist(Pi, Pj) is calculated in terms of distance of Pi and Pj from their ancestor that is
the point of the multidimensional lattice closest to both the views. Figure 2 shows two
different situations on the same multidimensional lattice: even if the aggregation level
of the patterns is similar, the distance between each couple change significantly.
The average skewness (ASK) of the full workload W ={Q1,…Qn} can be calculated as

() ∑ ∑
−

= +=−⋅
=

1

1 1
),(

1

2 n

i

n

ij
ji PPDist

nn
ASK

(6)

where Pz is the pattern of query Qz. ASK ranges in [0,2[1 . Also for the skewness
indicator it is useful to calculate the standard deviation (Skewness Standard
Deviation, SKSD) in order to evaluate how the distances between queries are
distributed with respect to their mean value:

() ()∑ ∑
−

= +=
−

−⋅
=

1

1 1

2),(
1

2 n

i

n

ij
ji ASKPPDist

nn
SKSD

(7)

Intuitively, workloads with low values for ASK will be efficiently optimized using
materialized views since the similarity of the query patterns makes it possible to
materialize few views to optimize several queries.

Fig. 2. Distance between close and far patterns

4 Clustering of queries

Clustering is one of the most common techniques for classification of features into
groups. Several algorithms have been proposed in the literature (see [4] for a survey)
each suitable for a specific class of problems. In this paper we adopted the
hierarchical approach that recursively agglomerates the two most similar clusters
forming a dendogram whose creation can be stopped at different levels to yield
different clustering of data, each related to a different level of similarity that will be
evaluated using the statistical indicators introduced so far. The initial clusters contain
a single query of the workload that represent them. At each step the algorithm looks

1 The maximum value for ASK depends on the cardinalities of the attributes and on the

functional dependencies defined on the hierarchies, thus it cannot be defined without
considering the specific star schema.

P0

{ }

P0

{ }

for the two most similar clusters that are collapsed forming a new one that is
represented by the query whose pattern is the ancestor of their representative. Figure 3
shows the output of this process. With a little abuse of terminology we write qx⊕ qy
meaning that the ancestor operator is applied to the pattern of the queries.

Fig. 3. A possible dendogram for a workload with 6 queries

Similarity between clusters is expressed in terms of the distance, as defined in Section
3.2, between the patterns of their representatives. Each cluster is represented by the
ancestor of all the queries belonging to it and is labeled with the sum of the
frequencies of its queries. This simple, but effective, solution reflects the criteria
adopted by the view materialization algorithms that rely on the ancestor concept when
choosing one view to answer several queries. The main drawback here is that the
value of AAL tends to decrease when the initial workload is strongly aggregated.
Nevertheless the ancestor solution is the only one ensuring that the cluster
representative effectively characterizes its queries with respect to materialization (i.e.
all the queries in the cluster can be answered on a view on which the representative
can also be answered). Adding new queries to a cluster inevitably induces
heterogeneity in the aggregation level of its queries thus reducing its capability to
represent all of them. Given a clustering Wc ={C1,…Cm}, we measure the
compactness of the clusters in terms of similarity of the aggregation levels of the
queries in each cluster as:

∑
=

=
m

i
iALSD

m
IntraALSD

1

1

(8)

where ALSDi is the standard deviation of the aggregation level for queries in the
cluster Ci. The lower IntraALSD the closer the queries in the clusters.

As to the behavior of ASK, it tends to increase when the number of clusters
decreases since the closer queries are collapsed earlier than the far ones. While this is
an obvious effect of clustering a second relevant measure of the compactness of the
clusters in Wc ={C1,…Cm} can be expressed in terms of internal skewness:

c1=q1 c2=q2 c3=q3 c4=q4 c5=q5 c6=q6

c7=q1⊕ q2

c8=q1⊕ q2⊕ q3

c9=q4⊕ q5⊕ q6

c10=q1⊕ q2⊕ q3⊕ q4⊕ q5⊕ q6

c7=q4⊕ q5

level 1

level 0

level 2

level 3

level 4

level 5

∑
=

=
m

i
iASK

m
IntraASK

1

1

(9)

where ASKi is the skewness of the queries in the cluster Ci. The lower IntraASK the
closer the queries in the clusters.

The ratio between the statistical indicators and the corresponding intra cluster ones
can be used to evaluate how well the clustering models the original workload; in
particular we adopted this technique to define when the clustering process must be
stopped; the stop rule we adopt is as follows:

Stop if SKAL T
IntraASK

ASK
T

IntraAAL

AAL >> ∨

In our tests both TAL and TSK have been set to 5.

5 Tests and discussion

In this section we present four different tests aimed at proving the effectiveness of
both profiling and clustering. The tests have been carried out on the LINEITEM fact
scheme described in the TPC-H/R benchmark [9] using a set of generated workloads.
Since selections are rarely take into account by view materialization algorithms our
queries do not present any selection clause. As to the materialization algorithm, we
adopted the classic one in the literature proposed by Baralis et al. [1]; the algorithm
first determines the set of candidate views and then heuristically chooses the best
subset that fits given space constraints. Splitting the process into two phases allows us
to estimate both the difficulty of the problem, that we measure in terms of the number
of candidate views, and the effectiveness of materialization that is calculated in terms
of the number of disk pages saved by materialization. The cost function we adopted
computes the cost of a query Q on a star schema S composed by a fact table FT and a
set {DT1,…, DTn} of dimension tables as

()()∑
∈

++=
)(

)()(),(
QDimi

ii PKSizeDTSizeFTSizeSQCost

(10)

where Size() function returns the size of a table/index expressed in disk pages,
Dim(Q) returns the indexes of the dimension tables involved in Q and PKi is the
primary index on DTi. This cost function assumes the execution plan that is adopted
by Redbrick 6.0 when no select conditions are present in a query on a star schema.

5.1 Workload features fitting

The first test shows that the statistical indicators proposed in Section 3 effectively
summarize the features of a workload. Four workloads, each made up of 20 queries,
have been generated with different values for the indicators. Table 1 reports the value
of the parameters and the resulting number of candidate views that confirms the
considerations made in Section 3. The complexity of the problem mainly depends on
the value of the ASK and is more slightly influenced by AAL. The simplest workloads

to be elaborated will be those with highly aggregated queries with similar patterns,
while the most complex will be those with very different patterns with a low
aggregation level. It should be noted that on increasing the size of the worklfoads,
those with a “nice” profile still perform well, while the others quickly become too
complex. For example workloads WKL5, WKL6, whose profile follows those of
WKL1 and WKL4 respectively, in Table 1 contains 30 queries: while the number of
candidate views remains low for WKL5, it explodes for WKL6. Actually, we stopped
the algorithm after two days of computation on a PENTIUM IV CPU (1GHz). The
profile is also useful to evaluate how well the workload will behave with respect to
view materialization. Figure 4.a shows that, regardless of the difficulty of the
problems, workloads with high values of AAL are strongly optimized even when a
limited disk space is available for storing materialized views. This behavior is
induced by the dimension, and thus by the number, of the materialized views that fits
the space constraint as it can be verified in Figure 4.b.

Table 1. Number of candidate views for workloads with different profiles

Name AAL ALSD ASK SKSD N. Candidate views
WKL1 0.835 0.307 0.348 0.393 97
WKL2 0.186 0.245 0.327 0.269 124
WKL3 0.790 0.278 0.810 0.391 596
WKL4 0.384 0.153 0.751 0.216 868
WKL5 0.884 0.297 0.316 0.371 99
WKL6 0.352 0.276 0.668 0.354 > 36158

0

2

4

6

8

10

12

1.1 1.4 1.7 2 2.3 2.6 2.9
Disk space constraint (GB)

M
ill

io
ns

 o
f d

is
k

pa
ge

s

0

5

10

15

20

1.1 1.4 1.7 2 2.3 2.6 2.9
Disk space constraint (GB)

N
. o

f m
at

er
ia

liz
ed

vi

ew
s

Fig. 4. Cost of the workloads (a) and number of materialized views (b) on varying the disk
space constraint for the workloads in Table 1

5.2 Clustering suboptimality

The second test is aimed at proving that clustering produces a good approximation of
the input workload, meaning that applying view materialization to the original and
clustered workload does not induce a too heavy suboptimality. With reference to the
workloads in Table 1, Table 2 shows how change the behavior and the effectiveness
of the view materialization algorithm changes for an increasing level of clustering. It

WKL2 WKL1 WKL3 WKL4

(a) (b)

should be noted that the number of candidate views can be strongly reduced inducing,
in most cases, a limited suboptimality. By comparing the suboptimality percentages
with the statistical indicator trends presented in Figure 5, it is clear that suboptimality
arises earlier for workloads where IntraASDL and IntraASK increase earlier.

5.3 Handling large workloads

When workloads with hundred of queries are considered it is not possible to measure
the suboptimality induced by the clustered solution since the original workloads
cannot be directly optimized. On the other hand, it is still possible to compare the
increase of the performance with respect to the case with no materialized views and it
is also interesting to show how the workload costs change depending on the number
of queries included in the clustered workload and how the cost is related to the
statistical indicators.

Table 2. Effects of clustering on the view materialization algorithm applied to workload in
Table 1

WKL #. Cluster # Cand.Views #. Mat.Views % SubOpt Stop rule at
15 90 12 0.001
10 68 7 0.308 WKL1
5 25 3 40.511

3

15 79 2 0.000
10 38 2 2.561 WKL2

5 6 2 4.564

6

15 549 10 1.186
10 156 7 22.146 WKL3

5 16 4 65.407

7

15 321 2 0.0
10 129 2 0.0 WKL4

5 17 2 0.0

4

Table 3 reports the view materialization results for two workloads, WKL 7
(AAL:0.915, ALSD:0.266, ASK: 0.209, SKSD: 0.398) - WKL 8 (AAL: 0.377,
ALSD: 0.250, ASK: 0.738, SKSD: 0.345), containing 200 queries. The data in the
table and the graphs in Figure 6 confirm the behaviors deduced from previous tests:
the effectiveness of view materialization is higher for workloads with high value of
AAL and low value of ASK. Also the capability of the clustering algorithm to capture
the features of the original workload depends on its profile, in fact workloads with
higher values of ASK require more queries (7 for WKL7 vs. 20 for WKL8) in the
clustered workload to effectively model the original one. On the other hand it is not
useful to excessively increase the clustered workload cardinality since the
performance improvement is much lower than the increase of the computation time.

0

0.5

1

1.5

20 18 16 14 12 10 8 6 4 2

N. Clusters

0
0.2
0.4
0.6
0.8

1

N. Clusters

0
0.2
0.4
0.6
0.8

1
1.2

20 18 16 14 12 10 8 6 4 2

N. Clusters

0

0.2

0.4

0.6

0.8

1

20 18 16 14 12 10 8 6 4 2

N. Clusters

Fig. 5. Trends of the statistical indicators for increasing levels of clustering and for different
workloads.

Table 3. Effects of clustering on the view materialization algorithm applied to workload in
Table 1

WKL
#.

Cluster

Cand.Views
#.

Mat.Views
%Cost

Reduction
Comp. Time

(sec.)
Stop rule

at
30 12506 17 90.6 43984
20 4744 15 89.0 439
10 384 9 83.3 39

WKL7

7 64 6 38.9 24

6

30 17579 5 19.1 78427
20 2125 5 17.8 304 WKL8
10 129 2 2.4 25

19

6 Conclusions

In this paper we have discussed two techniques that make it possible to carry out view
materialization when the high cardinality of the workload does not allow the problem
to be faced directly. In particular, the set of statistical indicators proposed have proved
to capture those workload features that are relevant to the view materialization
problem, thus driving the designer choices. The clustering algorithm allows large
workloads to be handled by automatic techniques for view materialization since it
reduces its cardinality slightly corrupting the original characteristics. We believe that
the use of the information carried by the statistical indicators we proposed can be

AAL ASK IntraAAL IntraASK

WKL1 WKL2

WKL3 WKL4

profitably used to increase the effectiveness of the optimization algorithms used in
both logical and physical design. For example, in [6] the authors propose a technique
for splitting a given quantity of disk space into two parts used for creating views and
indexes respectively. Since the technique takes account of only information relative to
a single query our indicators can improve the solution by providing the bent of the
workload to be optimized by indexing or view materializing.

0

0.5

1

1.5

2

20
0

18
0

16
0

14
0

12
0

10
0 80 60 40 20

N. Clusters

0

0.2

0.4

0.6

0.8

1

20
0

18
0

16
0

14
0

12
0

10
0 80 60 40 20

N. Clusters

Fig. 6. Trends of the statistical indicators for increasing levels of clustering and for different
workloads.

References

[1] E. Baralis, S. Paraboschi and E. Teniente. Materialized view selection in a
multidimensional database. In Proc. 23rd VLDB, Greece, 1997.

[2] A. Ghosh, J. Parikh, V.S. Sengar and J. R. Haritsa. Plan Selection Based on Query
Clustering, In Proc. 28th VLDB, Hong Kong, China, 2002.

[3] A. Gupta, V. Harinarayan and D. Quass. Aggregate-query processing in data-warehousing
environments. In Proc. 21st VLDB, Switzerland, 1995.

[4] A.K. Jain, M.N. Murty and P.J. Flynn. Data Clustering A Review. ACM Computing
Surveys, Vol. 31, N. 3, September 1999.

[5] T. P. Nadeau and T. J. Teorey. Achieving scalability in OLAP materialized view selection.
In Proc. DOLAP’02, Virginia USA, 2002.

[6] S. Rizzi and E. Saltarelli. View materialization vs. Indexing: balancing space constraints in
Data Warehouse Design. To appear in Proc. CAISE’03, Austria, 2003.

[7] T. K. Sellis. Global query Optimization. In Proc. SIGMOD Conference Washington D.C.
1986, pp. 191-205.

[8] D. Theodoratos, M. Bouzeghoub. A General Framework for the View Selection Problem
for Data Warehouse Design and Evolution. In Proc. DOLAP’00, Washington D.C. USA,
2000.

[9] Transaction Processing Performance Council. TPC Benchmark H (Decision Support)
Standard Specification, Revision 1.1.0, 1998, http://www.tpc.org.

WKL7 WKL8

AAL ASK IntraAAL IntraASK

