

Prof. Matteo Golfarelli

Alma Mater Studiorum - Università di Bologna

Weka

- Un software per il Data Mining/Machine learning scritto in Java e distribuito sotto la GNU Public License)
 - ✓ Waikato Environment for Knowledge Analysis
- Utilizzato in ambito scientifico, didattico e applicativo
 - Include:
 - Un insieme di tool per il pre-processing, algoritmi di apprendimento e metodi di valutazione
 - ✓ Interfaccia grafica
 - Un ambiente per comparare i risultati degli algoritmi di apprendimento

Gestione dei dati

- II principale tipo di dati con cui opera WEKA è l'Attribute Relation file (ARFF file)
 - I file descrivono la relazione, gli attributi e i valori che questi possono contenere, i dati

@relation heart-disease-simplified

@attribute age numeric
@attribute sex { female, male}
@attribute chest_pain_type { typ_angina, asympt, non_anginal, atyp_angina}
@attribute cholesterol numeric
@attribute exercise_induced_angina { no, yes}
@attribute class { present, not_present}

@data

63,male,typ_angina,233,no,not_present 67,male,asympt,286,yes,present 67,male,asympt,229,yes,present 38,female,non_anginal,?,no,not_present

Gestione dei dati

- I classificatori costruiti (addestrati) possono essere salvati su file denominati modelli
 - Il salvataggio e il caricamento del modello si avviano con un right click del mouse sulla result list
- E quindi possibile ricaricare un modello e rieseguirlo su un nuovo data set
 - ✓ II data set deve essere caricato utilizzando la voce "Test options→Supplied test set"

Il pre-processing si realizza mediante filtri:

- ✓ Discretizzazione
- ✓ Normalizzazione
- ✓ Resampling
- ✓ Selezione di attributi
- ✓ Trasformazione di attributi
- Il tab pre-processing consente inoltre di attivare funzionalità di visualizzazione delle distribuzioni dei dati rispetto all'attributo di classificazione o altro attributo

Preprocess Classify Cluster Associate Select attributes Visualize			outlook	temperature	humidity
Open file Open URL Open DB Gener	ate Undo Edit	Save	5 5	8	7 7
Filter			4		
Choose None		Apply		•	
Current relation	Selected attribute				
Relation: weather Instances: 14 Attributes: 5	Name: outlook Ty Missing: 0 (0%) Distinct: 3 Unic	'ype: Nominal ique: 0 (0%)			
Attributes	No. Label	Count			
All None Invert Pattern	1 sunny 5 2 overcast 4				
No. Name	5 rainy 5				
1 🗖 outlook				84 7 8 85	85 80.5 96
2 temperature			windy	play [64, 74.5]	00_00_00
			8	9	
5 play	Elacs: play (Nom)	Vicualiza All			
	Class, pidy (wony				
			6		
	4			5	
Remove					
Status					
ОК			•		

- Il pre-processing si realizza mediante filtri:
 - ✓ Discretizzazione
 - Discretize (unsup.- attr.): An instance filter that discretizes a range of numeric attributes in the dataset into nominal attributes.
 - ✓ Normalizzazione
 - Normalize (unsup.- attr.): normalizes all numeric values in the given dataset (apart from the class attribute, if set). The resulting values are by default in [0,1] for the data used to compute the normalization intervals. But with the scale and translation parameters one can change that, e.g., with scale = 2.0 and translation = -1.0 you get values in the range [-1,+1].
 - Standardize (unsup.- attr.): standardizes all numeric attributes in the given dataset to have zero mean and unit variance (apart from the class attribute, if set).

- Il pre-processing si realizza mediante filtri:
 - ✓ Resampling
 - **Resample** (unsup.- inst.): produces a random subsample of a dataset using either sampling with replacement or without replacement.
 - Trasformazione di attributi e valori
 - NominalToBinary (unsup.- attr.): : converts all nominal attributes into binary numeric attributes.
 - AddNoise: (unsup.- attr.): An instance filter that changes a percentage of a given attributes values. The attribute must be nominal. Missing value can be treated as value itself.

✓ Gestione valori mancanti

 ReplaceMissingValues (unsup.- attr.): replaces all missing values for nominal and numeric attributes in a dataset with the modes and means from the training data.

- Selezione di attributi: consente di identificare il subset di attributi che contenga la massima quantità di informazione
 - CfsSubsetEval: evaluates the worth of a subset of attributes by considering the individual predictive ability of each feature along with the degree of redundancy between them
 - ClassifierSubsetEval: evaluates attribute subsets on training data (or a separate hold out testing set). <u>Uses a classifier to estimate</u> the 'merit' of a set of attributes.
 - Lo spazio di ricerca (possibili subset degli attributi) può essere elevato è necessario definire un metodo di ricerca
 - ✓ Bestfirst

 \checkmark

- ✓ ExhaustiveSearch
- ✓ GreedyStepWise
- ✓ RandomSearch

Visualizzazione

- Permette di visualizzare in un piano cartesiano le istanze del data set in funzione dei valori assunti da coppie di attributi
 - ✓ Il valore della classe è indicato tramite una diversa colorazione
- Dopo avere eseguito la classificazione è possibile utilizzare lo stesso tipo di visualizzazione per analizzare le istanze classificate in modo non corretto (rappresentate tramite rettangoli)
 - La visualizzazione si attiva con il tasto destro del mouse, selezionando la riga del log di esecuzione dell'algoritmo di learning

Le tuple vere e proprie possono essere visualizzate

- ✓ Dalla Weka GUI Choser
 - Tools→ArffViewer
- ✓ Da Weka Explorer
 - Pulsante Edit

Classificazione

- Il tab di classificazione permette di:
 - ✓ Selezionare il tipo di algoritmo di classificazione e settarne i parametri
 - ✓ Definire le modalità per valutare la bontà del risultato
 - Visualizzare il risultato della classificazione

Tra i molti classificatori a disposizione utilizzeremo:

- Alberi decisionali (tree)
 - J48: implementazione dell'algoritmo C4.5
 - Unpruned (TRUE/FALSE) esegue o meno il post pruning
 - Confidence factor: valori piccoli accentuano l'effetto del post pruning
 - minNumObj : numero minimo di elementi in una foglia
 - Decision Stump: crea un albero decisionale a un livello
- Classificatori basati su regole (rules)
 - Jrip: implementazione dell'algoritmo RIPPER
 - usePruning(TRUE/FALSE) esegue o meno il pruning
 - minNo: numero minimo di ementi coperti da una regola

Classificazione

- Il tab di classificazione permette di:
 - ✓ Selezionare il tipo di algoritmo di classificazione e settarne i parametri
 - ✓ Definire le modalità per valutare la bontà del risultato
 - Visualizzare il risultato della classificazione

Tra i molti classificatori a disposizione utilizzeremo:

- Classificatori istance based (lazy)
 - IBK: implementazione dell'algoritmo k-mediani
 - KNN: valore di k
 - nearestNeighbourSearchAlgorithm: tecnica utilizzata per la ricerca dell'NN
- Classificatori Bayesiani (bayes)
 - Naive Bayes: implementazione dell'omonimo algoritmo

Classificazione

Tra i molti classificatori a disposizione utilizzeremo:

- Multi-classificatori (meta): utilizzano classificatori semplici per creare classificatori più complessi e potenti
 - Bagging
 - AdaBoost
 - RandomCommittee: il classificatore calcola la media dei risultati di più alberi decisionali ognuno dei quali utilizza un sottoinsieme random di attributi
 - CostSensitiveClassifier: rende cost sensitive il classificatore selezionato
- Test options: definiscono le modalità per verificare l'errore di classificazione:
 - ✓ Use training set
 - ✓ Supplied test set
 - Cross validation
 - ✓ Percentage split
- Attivando il flag More Options→Cost-Sensitive evaluation è inoltre possibile effettuare una **valutazione** dipendente dal peso degli errori

Analisi della classificazione

=== Classifier model (full training set) ===

J48 pruned tree

wage-increase-first-year <= 2.5: bad (15.27/2.27)
wage-increase-first-year > 2.5
 statutory-holidays <= 10: bad (10.77/4.77)
 statutory-holidays > 10: good (30.96/1.0)

Number of Leaves : 3

Size of the tree : 5

Time taken to build model: 0 seconds

=== Evaluation on training set === === Summary ===

Correctly Classified Instances	50	87.7193 %	
Incorrectly Classified Instances	7	12.2807 %	
Kappa statistic	0.745		
Mean absolute error	0.195		
Root mean squared error	0.304		
Relative absolute error	42.6664 %		
Root relative squared error	63.6959 %		
Total Number of Instances	57		

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area	Class
	0.95	0.162	0.76	0.95	0.844	0.918	bad
	0.838	0.05	0.969	0.838	0.899	0.918	good
Weighted Avg.	0.877	0.089	0.896	0.877	0.88	0.918	

=== Confusion Matrix ===

a b <-- classified as 19 1 | a = bad

6 31 | b = good

Matrice di confusione

Struttura dell'albero/regole con indicazione del numero di istanze del training set classificate correttamente e non. Le frazioni riguardano istanze con valori mancanti

Statistiche riassuntive

Statistiche dettagliate per classe