
High-Performance Online Spatial and Temporal

Aggregations on Multi-core CPUs and Many-Core GPUs

Jianting Zhang1,2 Simin You2, Le Gruenwald3

1 Depart of Computer Science, CUNY City College (City College of New York)

2 Department of Computer Science, CUNY Graduate Center

3 School of Computer Science, the University of Oklahoma

1

http://images.google.com/imgres?imgurl=http://www.ccny.cuny.edu/public_safety/LOGO-NEW-2.gif&imgrefurl=http://www.ccny.cuny.edu/public_safety/&h=1518&w=1670&sz=419&hl=en&start=5&usg=__RzwNqxW2tlvxCgyaIMmAFcqnUOo=&tbnid=LQS2VxavYEbsuM:&tbnh=136&tbnw=150&prev=/images?q=ccny+logo&gbv=2&hl=en&sa=X
http://www.google.com/imgres?imgurl=http://www.dln.cuny.edu/it/images/cuny_logo_blue.gif&imgrefurl=http://www.dln.cuny.edu/it/cfp.html&usg=__BxUFrh8fbpc2QuPJ392UNNFwkf4=&h=86&w=177&sz=3&hl=en&start=5&um=1&itbs=1&tbnid=ajHY5OdlYfw1TM:&tbnh=49&tbnw=101&prev=/images?q=cuny+logo&um=1&hl=en&imgtbs=s&tbs=isch:1
http://images.google.com/imgres?imgurl=http://geosciences.ou.edu/logos/OU/OU-400.gif&imgrefurl=http://saturdayrugbyday.blogspot.com/2006/01/oklahoma-rugby-teams-host-camp.html&h=550&w=400&sz=8&hl=en&start=4&usg=__3HWU3kWbUxwyq0tezUsVqXSAhrg=&tbnid=iBoCWfz2RNAzZM:&tbnh=133&tbnw=97&prev=/images?q=university+of+oklahoma+site:ou.edu&gbv=2&hl=en

Outline

•Introduction

•Background and Motivation

•Spatial, Temporal and Spatiotemporal

Aggregations of Taxi Trips

•Implementation Details

•Experiments and Results

•Conclusion and Future Work

2

Introduction

 • Spatial, temporal and spatiotemporal aggregations are
commonly used OLAP operations SOLAP, TOLAP,
STOLAP

• Several existing OLAP systems are built on top of GIS
and Spatial Databases and suffer from low performance
when handling large-scale datasets on traditional
hardware (disk-resident + serial CPU)

• This research aims at investigating the feasibility and
efficiency on spatial, temporal and spatiotemporal
aggregations on new hardware (large main-memory +
massively data parallel GPUs) using a domain-specific
case study (taxi trip records)

3

Background and Motivation

4

Taxi trip records

•~300 million trips in about two years

•~170 million trips (300 million passengers) in 2009

•1/5 of that of subway riders and 1/3 of that of bus

riders in NYC

•13,000 Medallion taxi cabs

•Only taxis with Medallion

license are for hail (the rule could

be changing outside Manhattan...)

4

Background and Motivation

Count-Distance Distribution

0

5000000

10000000

15000000

20000000

<
=

0

.0

(
 0

.8
,

 1
.0

]

(
 1

.8
,

 2
.0

]

(
 2

.8
,

 3
.0

]

(
 3

.8
,

 4
.0

]

(
 4

.8
,

 5
.0

]

(
 5

.8
,

 6
.0

]

(
 6

.8
,

 7
.0

]

(
 7

.8
,

 8
.0

]

(
 8

.8
,

 9
.0

]

(
 9

.8
,

1
0

.0
]

(
1

0
.8

,
1

1
.0

]

(
1

1
.8

,
1

2
.0

]

(
1

2
.8

,
1

3
.0

]

(
1

3
.8

,
1

4
.0

]

(
1

4
.8

,
1

5
.0

]

(
1

5
.8

,
1

6
.0

]

(
1

6
.8

,
1

7
.0

]

(
1

7
.8

,
1

8
.0

]

(
1

8
.8

,
1

9
.0

]

(
1

9
.8

,
2

0
.0

]

Trip Distance (mile)

C
o

u
n

t

Count-Time Distribution

0

5000000

10000000

15000000

20000000

<
=

0

.0

(
 2

.0
,

 3
.0

]

(
 5

.0
,

 6
.0

]

(
 8

.0
,

 9
.0

]

(
1

1
.0

,
1

2
.0

]

(
1

4
.0

,
1

5
.0

]

(
1

7
.0

,
1

8
.0

]

(
2

0
.0

,
2

1
.0

]

(
2

3
.0

,
2

4
.0

]

(
2

6
.0

,
2

7
.0

]

(
2

9
.0

,
3

0
.0

]

(
3

2
.0

,
3

3
.0

]

(
3

5
.0

,
3

6
.0

]

(
3

8
.0

,
3

9
.0

]

(
4

1
.0

,
4

2
.0

]

(
4

4
.0

,
4

5
.0

]

(
4

7
.0

,
4

8
.0

]

>
 5

0
.0

TripTime (Minute)

C
o

u
n

t

Count-Speed Distribution

0

5000000

10000000

15000000

20000000

<
=

0

.0

(

1

.0
,
 2

.0
]

(

3

.0
,
 4

.0
]

(

5

.0
,
 6

.0
]

(

7

.0
,
 8

.0
]

(

9

.0
,
1

0
.0

]

(
 1

1
.0

,
1

2
.0

]

(
 1

3
.0

,
1

4
.0

]

(
 1

5
.0

,
1

6
.0

]

(
 1

7
.0

,
1

8
.0

]

(
 1

9
.0

,
2

0
.0

]

(
 2

1
.0

,
2

2
.0

]

(
 2

3
.0

,
2

4
.0

]

(
 2

5
.0

,
2

6
.0

]

(
 2

7
.0

,
2

8
.0

]

(
 2

9
.0

,
3

0
.0

]

(
 3

1
.0

,
3

2
.0

]

(
 3

3
.0

,
3

4
.0

]

(
 3

5
.0

,
3

6
.0

]

(
 3

7
.0

,
3

8
.0

]

(
 3

9
.0

,
4

0
.0

]

(
 4

1
.0

,
4

2
.0

]

(
 4

3
.0

,
4

4
.0

]

(
 4

5
.0

,
4

6
.0

]

(
 4

7
.0

,
4

8
.0

]

(
 4

9
.0

,
5

0
.0

]

Speed (MPH)

C
o

u
n

t

Count-Fare Distribution

0

5000000

10000000
15000000

20000000

25000000

30000000

<
=

0
.0

(
 1

.0
,

 2
.0

]

(
 3

.0
,

 4
.0

]

(
 5

.0
,

 6
.0

]

(
 7

.0
,

 8
.0

]

(
 9

.0
,

1
0
.0

]

(
1
1
.0

,
1
2
.0

]

(
1
3
.0

,
1
4
.0

]

(
1
5
.0

,
1
6
.0

]

(
1
7
.0

,
1
8
.0

]

(
1
9
.0

,
2
0
.0

]

(
2
1
.0

,
2
2
.0

]

(
2
3
.0

,
2
4
.0

]

(
2
5
.0

,
2
6
.0

]

(
2
7
.0

,
2
8
.0

]

(
2
9
.0

,
3
0
.0

]

(
3
1
.0

,
3
2
.0

]

(
3
3
.0

,
3
4
.0

]

(
3
5
.0

,
3
6
.0

]

(
3
7
.0

,
3
8
.0

]

(
3
9
.0

,
4
0
.0

]

(
4
1
.0

,
4
2
.0

]

(
4
3
.0

,
4
4
.0

]

(
4
5
.0

,
4
6
.0

]

(
4
7
.0

,
4
8
.0

]

(
4
9
.0

,
5
0
.0

]

Fare ($)

C
o

u
n

t

Overall distributions of trip distance, time, speed and fare: majority

of taxi trips are within 3 miles and cost less than $10: affordable;

but the median speed is about 10 miles per hour: significant traffic

5

Background and Motivation
• How to manage taxi trip data?

– Geographical Information System (GIS)

• E.g. ESRI ArcGIS

– Spatial Databases (SDB)

• E.g., PostgreSQL/PostGIS

– Moving Object Databases (MOD)

• E.g. Secondo

• How good are they?

– Pretty good for small amount of data

– But, rather poor for large-scale data

6 6

Background and Motivation

• Example 1:
– Creating a geometry column from lat/long columns that is necessary for

subsequent indexing and query processing in PostgreSQL/PostGIS

– 170 million taxi pickup locations in 2009

– UPDATE t SET PUGeo = ST_SetSRID(ST_Point("PULong","PULat"),4326);

– 105.8 hours!

• Example 2:
– Finding the nearest tax blocks for 170 million taxi pickup locations (to

aggregate based on tax block types)

– Using open source libspatiaindex+GDAL (to avoid database overhead)

– 30.5 hours!

Can we get interactive responses?
7

Background and Motivation

Cloud computing+MapReduce+Hadoop

Multicore

CPUs

GPGPU Computing:

From Fermi to

Kepler

8

Background and Motivation

Feature Intel Xeon E7-8870 Nvidia Tesla K10

Price $4,61,6 $2,500

Processing Cores 10 3,072 (in 15

multiprocessors)

Hardware threads 10*2 15*2048

Frequency 2400 MHZ 745 MHZ

L1/L2/L3 cache (32k+32K)/256K/30M per

core

48K per SM

RAM variable 8GB

Memory Bandwidth 25.6 GB/s 320 GB/s

Number of

Transistors

2.6 Billion 7.0 Billion

Power Consumption 130 W 225 W

9

Aggregations on Taxi Trip Records

Medallion#

Shift#

Trip#

Trip_Pickup_DateTime

Trip_Dropoff_DateTime

Trip_Pickup_Location

Trip_Dropoff_Location

Start_Lon

Start_Lat

End_Lon

End_Lat

Payment_Type

Surcharge

Total_Amt

Rate_Code

Passenger_Count

Fare_Amt

Tolls_Amt

Tip_Amt
Trip_Time

Trip_Distance

vendor_name

date_loaded

store_and_forward

time_between_service

distance_between_service

Start_Zip_Code

End_Zip_Code

start_x

start_y

end_x

end_y

(local

projection)

1

2

3

4

5

6

7
8 9

11

10

10

Aggregations on Taxi Trip Records

Year

Month

Day

Hour

Day of the

Year

Week of the

Year

Day of the

Week

City

Borough

Community

District
Police

Precinct

Census

Tract

Census

Block

Street Segment

Tax

Lot

Tax

Block

Pickup/drop-off locations

Level 0 grid

Level k

grid

Top level

grid

15/30-

minutes

Pickup/drop-off timestamps

NYC taxi trip records

Peak/

off-peak

Auxiliary data (weather, events…) 11

Implementation Details

Mapping a point to its

nearest street segment

Single-Level Grid-

File based Spatial

Filtering on GPUs
Vertices of

street

segments

Points

Grouping points

into quadrants

12

Implementation Details

Parallel Counting on GPUs using parallel primitives

Transform to generate keys

(spatial entity identifiers,

temporal units or their

combinations)

Sort

Reduce

struct make_key

{

 __host__ __device__

 uint operator()(thrust::tuple<uint, uint> v)

 {

 uint segid=(thrust::get(0)(v)) &0x07FFFFFF

 uint hour =(thrust::get(1)(v)>>12)&0x0000001F;

 return ((segid<<5)|hour);

 }

};

3 1 2 1 3

1 1 2 3 3

1 2 3 2 1 2

key count
13

Experiment and Results

• Data

– Taxi trip records: 300 million in two
years (2008-2010), ~170 million in 2009

– NYC DCPLION street network data:
147,011 street segments

• Hardware

– Dell T5400 Dual Quadcore CPUs with 16
GB memory

– Nvidia Quadro 6000 with 448 cores and 6
GB memory

14

Experiment and Results

Table 1 Results on Spatial Associations on GPUs

of Months

1 2 3 4 6 9 12

N1 (*106) 13.84 27.00 41.17 55.23 83.81 124.64 168.38

N2 (*106) 0.155 0.306 0.496 0.676 0.982 1.358 1.747

t1 (second) 0.955 1.876 2.908 3.915 5.986 9.001 12.233

t2 (second) 2.059 1.615 1.472 1.495 1.123 1.176 1.221

t3(second) 0.200 0.343 0.519 0.677 0.941 1.270 1.601

T=t1+t2+t3 3.214 3.834 4.899 6.087 8.050 11.447 15.055

N1- # of point locations; N2- # of point quadrants

t1: time to generate point quadrants

t2:time to filter bounding boxes (point quadrants/street segments)

t3: time to compute distances and assign identifiers
15

Experiment and Results

GPU-Time CPU-Time Speedup

t1 (s) 12.233 162.004 13X

t2 (s) 1.221 /

t3(s) 1.601 35.338

T=t1+t2+t3(s) 15.055 197.342 22X

t1: time to generate point quadrants

t2:time to filter bounding boxes (point quadrants/street segments)

t3: time to compute distances and assign identifiers

Table 1. Performance comparison on spatial association

16

Experiment and Results

Table 2. Experiment Results for Different

Aggregations on Multi-Core CPUs (in Seconds)

Aggregation Serial 1T 2T 4T 8T 16T

1 Pickup Segment (spatial) 12.519 19.776 9.768 4.992 2.513 1.721

2 Pickup Hour (temporal) 7.043 6.089 4.347 2.121 1.186 0.907

3 Pickup Segment+Hour

(Spatiotemporal) 17.128 24.238 12.522 6.707 3.803 3.781

17

Experiment and Results

Aggregation CPU-

Serial

CPU-

Best

GPU CPU-Serial

/GPU

CPU-Best

/GPU

Spatial 12.519 1.721 0.188 66.6 9.2

Temporal 7.043 0.907 0.257 27.4 3.5

Spatiotemporal 17.128 3.781 0.274 62.5 13.8

Performance comparison on counting

18

Conclusion and Future Work

• We report our designs, implementations and experiments on

spatial, temporal and spatiotemporal aggregations of hundreds of

millions of taxi trip records in an OLAP setting

• By utilizing the massively data parallel GPU processing power,

we were able to spatially associate nearly 170 million taxi pickup

location points with their nearest street segments among 147,011

candidates in about 15 seconds and achieved 13X speedup over

optimized serial CPU implementation.

• Spatial, temporal and spatiotemporal aggregations can be

processed in the order of a fraction of a second on GPUs.

• The experiment results support the feasibility of building a high-

performance OLAP system for processing large-scale taxi trip

data for real-time, interactive data explorations on GPUs. 19

Conclusion and Future Work

• To scale up, we would like to further reduce the
processing times for both spatial association and
counting.

• To investigate the appropriate spatial and
temporal scales for interactive OLAP processing

• To scale-out, we plan to explore cluster
computing technologies to process larger scale
data, e.g. multi-year and multi-city.

20

Implementation Details

• Example query:

 Count the number of taxi pickup locations at each of the street
segments at each of the 24 hours

=> Need spatiotemporal aggregation

Procedure:

Step 1: perform spatial association to find out the corresponding street
segment ids of each taxi pickup location => the vector PU_seg: each
entry in the vector is the street segment id for a taxi pickup location (the
number of vector entries is equal to the number of taxi pickup records)

Step 2: input vector PU_seg and vector PU_t that stores the taxi pickup
hours for the corresponding taxi pickup location to the counting module
and run the counting module to find the answer for the query

21

