Warehousing and Querying Trajectory Data Streams With Error Estimation

Elio Masciari ICAR-CNR

DOLAP
MAUI 2 November 2012

- Trajectory Data
- Prime Numbers Encoding for Paths
- Warehousing Steps
- Experimental Evaluation
- Conclusions

Outline

- Data Pertaining to time and position of moving objects
 - GPS systems
 - Traffic management
- Two dimensional
 - In general partitioning is a well accepted solution
 - Segmentation
 - Regioning

Trajectory Data

Trajectory Data

- Regioning
 - IPCA: Identifies Preferred Directions for Data
 - Differential Regioning
- Prime Number Encoding:
 - Trajectories represented as products of prime numbers

Our Solution: Regioning+ Encoding

Regioning: regions close to principal directions are finer

- T1 = ABC crossing three regions A,B,C.
 Assign to regions A, B and C respectively the prime numbers 3,5,7
- For trajectory T1 the witness W1 is 52 since 52%3 = 1 = pos(A) and 52%5 = 2 = pos(B) and 52%7 = 3 = pos(C)
- Store the encoded trajectories using a binary tree

Encoding: prime numbers

- Building Specialized cuboids: TRAC
 - Distinct Count Problem
- Measures
 - the number of distinct trajectories (Intersections),
 - the average traveled distance (Distance),
 - the average time interval duration (Duration)

Trajectory Warehousing

- Precomputed cuboids pertaining to most interesting recent data
- Merging cuboids at different granularity levels when needed
- Iceberg assumption

TRACs

- Data reduction by regioning
- Efficient Queying via Encoding
- Warehousing in order to allow trajectory querying effectively
- Good performances
 - Accuracy
 - Efficiency

Conclusions