

Colocated with ACM CIKM 2012

Maui, Hawaii, USA November 2, 2012

By Chantola KIT

Marouane HACHICHA

Jérôme DARMONT

Outline

- Introduction
- Background
- Benchmark Specification
- Experimental Demonstration
- Conclusion and Future Work

Introduction

- Decision Making:
 - **1. Business Intelligence (BI)** is famed for complex analysis
 - OLAP is a notable BI tool for multi-dimensional analysis
 - 2. DWs: collection of historical and concurrent data
 - XML is widely used to represent complex hierarchical data

Introduction (Cont.)

Effectiveness of Summarizability processing on complex hierarchies

- Benchmarks are used to support performance evaluation
- Existing XML data warehouse benchmark: XWeB
 - Complex hierarchies are not scalable

XML Data Example

Non-Strict Hierarchies

Incomplete Hierarchies

Related Work

- Relational Decision Support Benchmark
 - ☐ TPC: TPC-H and TPC-DS [TPPC'12]
 - □ SSB [VLDB/TPCTC'09]
 - □ DWEB [IJBIDM'07]
- XML benchmarks: Michigan [VLDB'02], MemBer [SIGMOD'05], X-Mach, XMark [VLDB/EEXTT'02], XOO7[CIKM'01], and XBench [ICDE'04]
- XML decision support benchmarks: XWeB [VLDB/TPCTC'10]
 - Only one complex hierarchy workload
 - Complexity lies only on part-category dimension
 - Query on complex hierarchies is limited
 - Complex hierarchy is not scalable

Objective

Extending XWeB with:

- Scalable complex hierarchies
- Summarizability processing

Data Model

Generating Incomplete Hierarchies

- Randomly delete ip hierarchical levels
 - ip: incomplete percentage

Generating Non-strict Hierarchies

- Randomly generate np non-strict hierarchies
 - np: non-strict percentage
 - 1. Randomly generate an array of *n* non-strict hierarchies
 - n: number of non-strict hierarchies. Ex. n = 4
 - 2. Convert the array into Hierarchical XML Data

Generating Complex Hierarchies

- Generate *n*-non-strict array (as in slide #12)
- 2. Randomly delete some levels from non-strict array
- 3. Convert the array into Hierarchical XML Data

Query Workload

Q21

sum of *f_quantity*, *f_totalamount* from *part*, *customer*, *supplier*, *date* group by *part*, *customer*, *supplier*, *date*

Q23

max of *f_totalamount* from *date*, *part*, *supplier*, *customer* group by *month*, *type2*, *nation*, *region*

Q22

min of *f_quantity* from *customer*, *part*, *supplier*, *date* group by *nation*, *type3*, *nation*, *day*

Q24

average of f_totalamount from supplier, part, customer, date group by region, type1, region, year

Performance Metrics

- Quantitative metric: response time; the execution time of the query workload
- Qualitative metric: verifying the result whether the summarizability issues are correctly handled
 - Resulted groups are not duplicated
 - Total of aggregation values is equal to grand total
 - average value is the division of total and its number
 - Min is the least value
 - Max is the highest value

Experimental Study

- Summarizability processing using:
 - Our proposed approach: Query Based Approach (QBS) [COMAD'12]
 - □ Previous approach: Pedersen's approach (Pedersen) [VLDB'99]

Experimental Study (Cont.)

Dataset size (KB)

No. Facts	50,000	100,000	150,000	200,000	250,000
Simple	27,700	55,390	82,800	110,577	138,015
Incomplete 5%	27,626	55,242	82,543	110,249	137,573
Non-strict 5%	28,669	57,328	85,671	114,422	142,786
Complex 5%	28,376	56,742	85,791	113,252	141,319
Incomplete 50%	25,020	50,030	74,769	99,842	124,601
Non-strict 50%	35,412	70,826	105,914	141,397	176,527
Complex 50%	32,522	65,031	97,263	129,839	162,088

Exp. Results of Simple Hierarchy Grouping

Exp. Results of QBS Simple Hierarchy Group Matching

- QBS without Overhead, without Group Matching
- QBS with Overhead, without Group Matching
- QBS with Overhead, with Group Matching

Exp. Results of Pedersen Simple Hierarchy Group Matching

- Pedersen without Overhead, without Group Matching
- Pedersen without Overhead, with Group Matching
- Pedersen with Overhead, with Group Matching

Exp. Results of Complex Hierarchy Grouping

Exp. Results of QBS Complex Hierarchy Grouping

Conclusion

- First XML data warehouse benchmark with complex hierarchies
- Conform to Gray's criteria: relevance, portability, scalability, and simplicity
- Experimentation addressing summariability processing:
 - Run-time summarizability management is feasible
 - Run-time of group matching process is still costly
- Future work:
 - Improve group matching process
 - ☐ Integrate with previous XML benchmarks: XWeB

QUESTIONS?

chantola.kit@univ-lyon2.fr

marouane.hachicha@univ-lyon2.fr

jerome.darmont@univ-lyon2.fr

Benchmark preliminary version: http://eric.uni-lyon2.fr/~ckit/DOLAP12.zip

