Approximate Answers to OLAP Queries on Streaming Data Warehouses

Michel DE ROUGEMONT, <u>Phuong Thao CAO</u> Paris II Univ., South Paris Univ. November 2, 2012

Outline

1. Context: OLAP Queries

- Approximate answers
- Streaming data

2. Data exchange

Approximate answers with:

- Sampling algorithm on the Sources
- Use of Statistical dependencies
- 3. Implementation

1. Context

• OLAP Schema

RecordID	SensorID	Date	Sun (hours)	Rain (hours)	
1001	8	11/02/12	8	2	
Fact table					

• Different streams feed the Fact table

• OLAP queries (Sum of Measure)

Measure=Hours of Sun

Analysis by Country

Analysis by Country/Manuf.

Approximation

• Distance L₁

100% error for the blue area

- Sampling:
 - classical technology to approximate
 - streaming: It is hard to approximate (Cormode et al. 2003)

• Data Exchange

2. OLAP Data Exchange

• Different sources

• Different streams: hard to approximate in the worst case (Cormode et al. 2012)

How can we approximate queries in some special case? **statistical dependencies**

2.1 Streams with Different Rates

- Data warehouse
 - Union of different Sources
 - Rate of tuples of each Source is different

(rate: relative number of tuples per unit of times)

Uniform samples on the Streams

- Approximate Algorithm
 - Step 1: sampling on each Source with uniform distribution.
 #samples % to the rate of the Source.
 - Step 2: combine all samples according the rates
 - Step 3: approximation on the union of samples

Theorem: On a window of size T, OLAP queries are ε -approximated with N samples (which depend on T and ε) with high probability.

2.2 Special Case: Statistical Dependencies

- Some attributes imply a distribution µ on the measure : A.B.C < M
 - (a,b,c) determines a fixed distribution on M
 - Generalization of functional dependencies

Distribution of pairs

• City.Country

City	Country	Density of tuples
London	U.K	1/12
Berlin	Germany	1/12
Paris	France	1/6

	Country	Distribution of Sun
•	U.K.	0.64
	Germany	0.21
	France	0.15

Manufacturer.City (δ)

Manufacturer	City	Density of tuples
Thomson	London	1/12
Thomson	Berlin	1/12
Siemens	Paris	1/12

	Manufacturer	Distribution of Sun
•	Siemens	0.39
	Thomson	0.61

Use of Statistical Hypothesis: Distributed Algorithm

- Each Source i, we sample by uniform distribution and:
 - Learn the $\boldsymbol{\mu}_i$
 - Estimate the distribution on pairs δ_i
 - Estimate its rate: r_i
- Data Warehouse:
 - Combine rates r_i , δ_i and μ_i to approximate the OLAP query on A (Manufacturer)

$$Q_{C=Siemens}^{M} = (r_1 \cdot Q_{C=Siemens}^{M})^1 + (r_2 \cdot Q_{C=Siemens}^{M})^2$$

= $\frac{2}{3} \cdot \left[\sum_{City} \delta(Siemens, City) \cdot Avg(\mu_{City}) \right] + \frac{1}{3} \cdot \left[\sum_{City} \delta(Siemens, City) \cdot Avg(\mu_{City}) \right]$
= 0.39

Statistical Model

Advantages:

- Statistical dependencies : more intuitive
- Sources send only statistical dependencies

(constant size of information on finite domains)

- Sources do not send samples

Our contribution

- Special situation: model of statistical dependencies on streaming data
- Approximation algorithms:
 - Sampling: each Source samples and we combine all the samples
 - Statistical model: combine statistical dependencies and distributions of pairs
- Worst case is not approximable

3. Implementation

- Program
 - Mondrian OLAP engine
 - Jpivot interface
- Data warehouse
 - -10^{6} tuples

Approximate answer on sources:

Data warehouse

- 12 sensors: 6 in France, 3 in Germany, 3 U.K.
- 2 manufacturers: Siemens, Thomson
- 9 cities
- 1≤ Sun, Rain ≤10
- Statistical dependencies:
 - City < Sun
- Distribution of pairs
 - City.Country
 - Manufacturer.City

Example 1: Analysis by country

Approximate answer on sources: Analysis by country

• Learn **distributions** μ_i , δ_i from samples

City	Avera	age value of Sun : Avg $_{\mu}(a_i)$			
London	3.5			Country	Distribution of Sun
Berlin	5			U.K.	0.64
Paris	7.5			Germany	0.21
				France	0.15
			F		
City	Country	Density of tuples : δ(a _i)		كر	$S(a) \times Ava (a)$
London	U.K.	1/12	m	$n_1 = m \times =$	$(u_i) \wedge Avg_{\mu}(u_i)$
Berlin	Germany	1/12	J	$\sum_{i=1}^{n}$	$\delta(a_i) \times Avg_{\mu}(a_i)$
Paris	France	1/6		i	

Approximate answer on sources: Analysis by country

Example 2: Analysis by Manufacturer

City	Avg value of Sunlight : Avg $_{\mu}(a_i)$
London	3.5
Berlin	5
Paris	7.5

Manufacturer	City	Density of tuples : δ(a _i)
Thomson	London	1/12
Thomson	Berlin	1/12
Siemens	Paris	1/12
Thomson	Paris	1/12

Manufacturer	Distribution of Sun
Siemens	0.39
Thomson	0.61

Approximate answer: Analysis by Manuf.

Analysis of errors

	Distribution of Answers				
Manufacturer	Uniform	Measure-based	Linear estimation by	Exact	
	sampling	sampling	the data exchange	answer	
Siemens	0.3851	0.4100	0.3890	0.3911	
Thomson	0.6149	0.5900	0.6110	0.6089	
TOTAL ERROR	0.0120	0.0378	0.0042		

- All algorithms: rate of errors < 4%
- Statistical model is better than uniform sampling
- Statistical model is better than Measure based sampling

Conclusion and Perspective

Conclusion

- In the case of statistical dependencies, the algorithm keeps a good approximation to OLAP queries
- Constant information exchanged on finite domains
- Required memory in the worst case: $\Omega(N)$

• Perspective:

- Application to RSS
- Decision tree for the statistical model: discover the statistical dependencies

Thank you !

Questions & Answers?