

ACM Fifteenth International Workshop On Data Warehousing and OLAP (DOLAP 2012)

Maui, Hawaii, USA November 2nd, 2012

Managing a Fragmented XML Data Cube with Oracle and Timesten

Doulkifli BOUKRAA, ESI, Algiers, Algeria
Omar BOUSSAID, Fadila BENTAYEB, ERIC Lab, Univ. Lyon 2 France
{omar.boussaid, fadila.bentayeb}@univ-lyon2.fr
Djamel Eddine ZEGOUR, ESI, Algiers, Algeria

Outline

- Context and Motivation
- Timesten in-Memory Database
- XML Data Cube
- XML Cube Management Configurations
- Implementation and Testing
- Related Work
- Conclusion

Context and motivation

- Performance optimization of data warehouses (DW)
- Focus on a special type of DWs: XML warehouses
- Warehousing and analyzing complex data
 - Multidimensional model: conceptual, logical, physical level
 - Performance issues
 - Vertical fragmentation approach proposed
- Crossing two techniques
 - Vertical Fragmentation
 - Caching

Objectives and Contribution

Objective:

- Analyze the impact of vertical fragmentation on caching and vice versa
- A better cache management (data organization-aware)
- Leverage the vertical fragmentation

Contributions

- A set of configurations to manage a fragmented XML cube
- A comparision between the configurations

TimesTen In-Memory database

- Oracle's In-memory database solution
- Different uses of TimesTen

- As a database cache for a disk resident database
 - Read-only transactions
 - Read-Write transactions
- As a full-featured relational database
 - Persistence
 - Recovery
 - **...**

XML cubeModel

General Cube Schema

■ Instantiation: Auction cube

- Unfragmented XML cube
 - Basic configuration
 - Fact and each dimension member = one XML document
 - Formally:
 - UXCube = $\{D_i, i=1, ...\}$ set of XML documents
 - Di = $\{P_j^i, i=1, ..., j=1,...\}$ set of XML properties accessed by XPath

- Fragmented XML cube
 - Vertical fragmentation approach for XML Cubes (Dawak'11)
 - Each document of the Cube split into fragments
 - Homogeneous fragments: properties ∈ same original document
 - Heteregenous fragments: properties

Before fragmentation

After fragmentation

- Fragmented XML cube
 - Frequent Fragment: derived from a frequent property set (Association rules)
 - InFrequent Fragment: properties ¬∈frequent property set

Formally

$$FXCube = \{FF_m, m=1, ...\} \cup \{IF_n, n=1, ...\}$$

Fragmented XML cube: example

XML Cube Management Configurations

XML Cube Management Configurations

Instantiation: Auction cube configurations

- Disk Resident Database: Oracle 11g Rel. 2
- Database cache and in-Memory database: Oracle TimesTen 11.2.1
- Data Set:
 - XML Cube of auctions: 6 XML document types
 - Fragmented Cube: 28 XML fragment types
- Query load: 100 analytical queries targeting different aggregation levels of UXCube
- Queries rewritten against FXCube

- First measure: average query response times
 - Unfragmented Vs Fragmented XML Cube

- First measure: average query response times
 - Unfragmented Vs Fragmented XML Cube

- First measure: average query response times
 - Unfragmented Vs Fragmented XML Cube

- First measure: average query response times
 - Disk-resident Vs Cached Vs in-Memory XML Cube

- First measure: average query response times
 - Disk-resident Vs Cached Vs in-Memory XML Cube

- Second measure: percentage of efficient queries
 - Unfragmented Vs Fragmented XML Cube

Disk resident configurations

- Second measure: percentage of efficient queries
 - Unfragmented Vs Fragmented XML Cube

In-Memory configurations

- Second measure: percentage of efficient queries
 - Unfragmented Vs Fragmented XML Cube

- Second measure: percentage of efficient queries
 - Disk-resident Vs Cached Vs in-Memory XML Cube

- Second measure: percentage of efficient queries
 - Disk-resident Vs Cached Vs in-Memory XML Cube

Related Work (1/2)

Category of work	Examples
Database & Web	 Altinel et al (2003): Static and dynamic caching Manegold et al (2000): Optimizing main memory access Dar et al. (1996): Semantic caching Huang and Hsu (2008): Web document caching
Data Warehouses	 Andrade et al. (2007): Optimizing multiple data analysis queries Deshpande et al. (1998) Cache small regions of a multidimensional space Lehner et al. (2000): Dynamic caching for multidimensional data Scheuermann et al. (1996): Caching small sets of query results Muto & Kitsuregawa (1998): Main memory for compressed cube management Ross & Zaman (2000): Cache data cube subset materialization
XML	 Yang et al. (2003): Cache frequent XML patterns Mandhani & Suciu (2005): Semantic cache of materialized Xpath queries Obermeier and Bottcher (2008): XML splitting over mobile devices

Related Work (2/2)

Discussion

 Our work meets the same motivation of Obermeier and Bottcher (2008) but applied to XML cubes

 Combination of Vertical fragmentation, main memory data management and caching not tackled before

Conclusion and Perspectives

Conclusion

- Crossed two optimization techniques of data warehouses:
 caching and vertical fragmentation
- Benefits of fragmentation when the cube is managed in main memory
- In-memory enhances both fragmented and unfragmented cube
- Main memory increases the % of efficient queries

Conclusion and Perspectives

- Pespectives
 - Implement our proposals on an ad hoc network
 - Combine horizontal and vertical fragmentation with cache and in-memory management