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Information flooding 

 One of the problems that affect OLAP explorations is the risk the 

size of the returned data compromises their exploitation 

 more detail gives more information, but at the risk of missing the 

overall picture, while focusing on general trends of data may prevent 

users from observing specific small-scale phenomena 
 

 Many approaches have been devised to cope with this problem: 

 Query personalization 

 Intensional query answering 

 Approximate query answering 

 OLAM On-Line Analytical Mining 
 

 The shrink operator falls in the OLAM category 

 it is based on a clustering approach 

 it can be applied to the cube resulting from an OLAP query to 

decrease its size while controlling the loss in precision 



The Shrink intuition 
 The cube is seen as a set of slices, each slice corresponds to a value of the finest 

attribute of the shrinked hierarchy 

 

 

 
 

 

 

 The slices are partitioned into a number of clusters, and all the slices in each cluster 

are fused into a single, approximate f-slice (reduction) by averaging their non-null 

measure values. 
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At each step the clusters to be merged must: 

• Minimize the approximation error (SSE) 

• Respect the hierarchy structure 



Shrink vs Roll-Up 
 A roll-up operation: 

 reduces the size of the pivot table based on the hierarchy structure only 

 the level of detail is changed for all the attribute values at the same time 

 the size of the result depends on the attribute granularity and is not tuned by 

the user 
 

 A shrink operation: 

 reduces the size of the pivot table considering the information carried by each 

slice while preserving the hierarchy structure 

 the level of detail of the result is changed only for specific attribute values 

 the size of the result is under the user control 
 

 



The hierarchy constraints 
 To preserve the semantics of hierarchies in the reduction, the clustering 

of the f-slices at each fusion step must meet some further constraints 

besides disjointness and completeness: 

 Two slices corresponding to values V' and V'' can be fused in a single f-slice 

only if both V' and V'' roll-up to the same value of the ancestor attribute 

 

 

 

 

 

 

 

 

 

 

 

 

 

 When a slice includes all the descendants of a given value, it is represented 

by that value 
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 To preserve the semantics of hierarchies in the reduction, the clustering 

of the f-slices at each fusion step must meet some further constraints 

besides disjointness and completeness: 

 Two slices corresponding to values V' and V'' can be fused in a single f-slice 

only if both V' and V'' roll-up to the same value of the ancestor attribute 

 



The approximation error 

 The SSE of a reduction can be incrementally computed  

 The SSE of a slice V obtained merging two slices V' and V'' can be computed 

from the SSEs of the slices to be merged as follows: 

 

 

 

 𝐻′𝑔  is the number of non-null V' descendants 

 𝐹𝑉
′
𝑔  is the value of the f-slice 𝐹𝑉

′
 at coordinate 𝑔  

 

 Incremental computation of the errors deeply impacts on the 

computation time of the shrink algorithms proposed next 

𝑆𝑆𝐸 𝐹𝑉
′∪𝑉′′ = 𝑆𝑆𝐸 𝐹𝑉

′
+𝑆𝑆𝐸 𝐹𝑉

′′
+  

𝐻′𝑔 ∙𝐻
′′𝑔 

𝐻′𝑔 +𝐻
′′𝑔 
𝐹𝑉
′
𝑔 − 𝐹𝑉

′′
(𝑔 )
2

𝑔 ∈𝐷𝑜𝑚 𝑏 ×𝐷𝑜𝑚 𝑐 …  



A Heuristic Algorithm 

  Fixed size-reduction problem: find the reduction that yields the 

minimum SSE among those whose size is not larger than sizemax 

 The search space has exponential size  

 The presence of hierarchy-related constraints reduces the problem search 

space 

 Worst case when no such constraints are present: the number of different 

partitions of a set with |Dom(a)| elements 

𝐵|𝐷𝑜𝑚(𝑎)| =  
𝐷𝑜𝑚 𝑎 − 1

𝑘
𝐵𝑘

𝐷𝑜𝑚 𝑎 −1

𝑘=0

 

 

 

 

A heuristic approach is needed to satisfy the real-time 

computation required in OLAP 

 



A Heuristic Algorithm 

  We adopted an agglomerative hierarchical clustering algorithm 

with constraints 

 the algorithm starts from a clustering, where each cluster corresponds to an f-

slice with a single value of the hierarchy. 

 merging two clusters means merging two f-slices 

 As a merging criterion we adopted the Ward's minimum variance method  

• at each step we merge the pair of f-slices that leads to minimum SSE increase 

 Two f-slices can be merged only if the resulting reduction preserves the 

hierarchy semantics 

 The agglomerative process is stopped when the next merge meets the 

constraint expressed by sizemax 

 

 Our approach can solve the symmetric problem too 

 Fixed error-reduction problem: find the reduction that yields the minimum 

size among those whose SSE is not larger than SSEmax 
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Experimental Results 
 2 different datasets adopted, 4 reduction problems 

 Different hierarchy features 

 Different sparsity 

 Different sizes 

Fact #Initial f-slice # facts #not-null 

facts 

Density 

Census1 1112  34 M  245 K 0,75% 

Census2 1112  50 K  12 K 24,17% 

Sales1 1560  34 M  200 K 0,58% 

Sales2 1560  28 K  6 K 22,20% 



Aprroximation errors 
 The SSE has been normalized to allow comparisons 

 𝑆𝑆𝐸% =
𝑆𝑆𝐸(𝑅𝑒𝑑ℎ 𝐶 )

𝑆𝑆𝐸𝑀𝐴𝑋ℎ 𝐶
 

 

 

 

 

 

 

 

 

 

 

 

 

 Further cube features that impact on effectiveness are: 
 Sparsity: the higher the sparsity, the lower the SSE increase 

 Variance of the values: the higher the variance the cells to be merged, the 

higher the SSE increase 
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hierarchies with loose 

constraints since they allow 

much more partitions 
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Shrink vs Roll-up 
 We compared the two operators on the Sales 2 cube applying the 

AVG operator when rolling-up 
 

The first roll-up step 

determines a large error. 

 

The number of aggregation 

step is strictly determined by 

the hierarchy structure 
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Efficiency 
 Tests are run on a Pentium i5 quad-core (2.67 GHz, 4 GB RAM) 

 Windows 7-64 bits 

 

 

 

 

 

 

 

 

 

 

 

 

 Further cube features that impact on efficiency are: 
 Size of the f-slice 

 Size of the cube 

 A shrink step requires less than 2 milliseconds in all of the 

previous test 

Loose hierarchy 

constraints make more 

partitions feasible  



Optimal vs Greedy 
 We adopted a branch-and-bound approach based on an optimal 

enumeration process 

 We set sizemax = 0.3 |Dom(a)| 

 Possible only on toy examples  

#f-slice # initial facts # facts at 

sizemax 

Error B&B execution 

time 

23 184 90 8.31% 3 secs 

24 192 90 0% 4 secs 

27 135 60 0% 3 mins 12 secs 

53 543 ---- ----- > 6 hours 



Conclusions 
 Shrink: a new OLAP operation to cope with the information flooding 

problem 

 We proposed a heuristic implementation 

 We analyzed its effectiveness and efficiency 
 

 Now working on: 

 Effectiveness: extending the formulation of the operator to work on several 

hierarchies simultaneously 

 Efficiency: studying smarter heuristics and different implementations of  the 

shrink idea  

• The eager shrink operator collapses at each step all the children of a given value 

 

 

 

 

 

 

 

 

 Optimality: studying optimal algorithms exploiting a column generation 

technique in a set partitioning formulation 

 Visualization: find out visual metaphors for representing complex pivot tables 
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