Minutia Cylinder-Code:

A new representation and matching technique for fingerprint recognition

Dott. Matteo Ferrara
Topics

• Overview of fingerprint local matching methods

• The new local structures representation

• The local similarity measure

• A bit-based implementation

• Global score and consolidation

• Experimental evaluation

• Conclusions and future works
A fingerprint is composed of a set of lines (ridge lines), which mainly flow parallel, making a pattern (ridge pattern).

The minutiae, or Galton’s characteristics, are determined by the termination or the bifurcation of the ridge lines.

\[m = \{x_m, y_m, \theta_m, t_m\} \]
Local minutiae-based matching methods

Minutiae-based matching consists in finding the alignment that results in the maximum number of minutiae pairings.

Local minutiae matching consists of comparing two fingerprints according to local minutiae structures.

Local structures are characterized by attributes that are invariant with respect to global transformation (e.g., translation, rotation, etc.) and therefore are suitable for matching without any a priori global alignment.

Minutia Cylinder-Code: A new representation and matching technique for fingerprint recognition

3
Families of local structures

Nearest neighbour-based structures:
the neighbors of the central minutia are formed by its K spatially closest minutiae. This leads to fixed-length descriptors that can be usually matched very efficiently.

A critical point of these type of algorithms is the possibility of exchanging nearest neighbour minutiae due to missing or spurious ones.

Fixed radius-based structures:
the neighbors are defined as all the minutiae that are closer than a given radius R from the central minutia. The descriptor length is variable and depends on the local minutiae density; this can lead to a more complex local matching; however, in principle, missing and spurious minutiae can be better tolerated.

Matching fixed radius-based structures can lead to border errors: in particular, minutiae which are close to the local region border in one of the two fingerprints can be mismatched because of different local distortion or location inaccuracy that cause the same minutiae to move out of the local region in the second fingerprint.
The basic idea behind the new local method

- Fixed radius structure;
- Fixed-length descriptors;
- Fast and simple matching phase;
- Matching algorithm compliant to ISO/IEC 19794-2 (2005);
- Portable on inexpensive secure platforms.
The cylinder local structure

\[\Delta_S = \frac{2 \cdot R}{N_S} \]
\[\Delta_D = \frac{2\pi}{N_D} \]

\[i, j \in I_S = \{ n \in \mathbb{N}, 1 \leq n \leq N_S \} \]
\[k \in I_D = \{ n \in \mathbb{N}, 1 \leq n \leq N_D \} \]
Minutia Cylinder-Code: A new representation and matching technique for fingerprint recognition

The cell identification indices

\[i, j \in I_s = \{ n \in \mathbb{N}, 1 \leq n \leq N_s \} \]

\[
\begin{bmatrix}
 \chi_m \\
 \gamma_m
\end{bmatrix} + \Delta s \cdot \begin{bmatrix}
 \cos(\theta_m) & \sin(\theta_m) \\
 -\sin(\theta_m) & \cos(\theta_m)
\end{bmatrix} \cdot \begin{bmatrix}
 i - \frac{N_s + 1}{2} \\
 j - \frac{N_s + 1}{2}
\end{bmatrix}
\]

\[k \in I_D = \{ n \in \mathbb{N}, 1 \leq n \leq N_D \} \]

\[
d\varphi_k = -\pi + \left(k - \frac{1}{2} \right) \cdot \Delta D
\]
Minutia Cylinder-Code: A new representation and matching technique for fingerprint recognition

\[
C_m(i, j, k) = \left\{ \begin{array}{ll}
\psi \left(\sum_{m_t \in N_{p_i, j}^m} C_m^S(m_t, p_{i, j}^m) \cdot C_m^D(m_t, d\phi_k) \right) \\
\text{if } \xi_m(p_{i, j}^m) = \text{valid}
\end{array} \right.
\]

\[
N_{p_i, j}^m = \{m_t \in T; m_t \neq m, d_S(m_t, p_{i, j}^m) \leq 3\sigma_s\}
\]

\[
\psi(\nu) = Z(\nu, \mu_\psi, \tau_\psi)
\]

\[
Z(\nu, \mu, \tau) = \frac{1}{1 + e^{-\tau(\nu - \mu)}}
\]
A new representation and matching technique for fingerprint recognition

The spatial contribution

\[C^S_m(m_t, p^m_{i,j}) = G_S(d_S(m_t, p^m_{i,j})) \]

\[G_S(t) = \frac{1}{\sigma_S \sqrt{2\pi}} e\left(-\frac{t^2}{2\sigma_S^2}\right) \]
A new representation and matching technique for fingerprint recognition

Minutia Cylinder-Code: A new representation and matching technique for fingerprint recognition

\[G_D(\alpha) = \frac{1}{\sigma_D \sqrt{2\pi}} \int_{a^\Delta_D} e^{-\frac{t^2}{2\sigma_D^2}} dt \]

\[\alpha_k = d\phi(d\varphi_k, -\pi/9) \]
\[\alpha_k^l = \alpha_k - \pi/6 \]
\[\alpha_k^u = \alpha_k + \pi/6 \]

\[\Delta_D = \pi/3 \]
\[d_\theta(m, m_1) = -\pi/9 \]
Minutia Cylinder-Code: A new representation and matching technique for fingerprint recognition

Example of a cylinder

- C_m
Cylinder template

Minutia Cylinder-Code: A new representation and matching technique for fingerprint recognition
The similarity between two cylinders

\[c_m[\text{lin}(i, j, k)] = c_m(i, j, k) \]

\[\text{lin}(i, j, k) = (k - 1) \cdot (N_S)^2 + (j - 1) \cdot N_S + i \]

\[c_{a|b}[t] = \begin{cases} c_{a}[t] & \text{if } c_{a}[t] \text{ and } c_{b}[t] \text{ are matchable} \\ 0 & \text{otherwise} \end{cases} \]

\[c_{b|a}[t] = \begin{cases} c_{b}[t] & \text{if } c_{b}[t] \text{ and } c_{a}[t] \text{ are matchable} \\ 0 & \text{otherwise} \end{cases} \]

\[\gamma(a, b) = \begin{cases} 1 - \frac{||c_{a|b} - c_{b|a}||}{||c_{a|b}|| + ||c_{b|a}||} & \text{if } C_a \text{ and } C_b \text{ are matchable} \\ 0 & \text{otherwise} \end{cases} \]

\[\gamma(a, b) = 0.75 \]

\[\gamma(a, c) = 0.38 \]
The cell value:

$$\Psi_{\text{Bit}}(v) = \begin{cases} 1 & \text{if } v \geq \mu_{\Psi} \\ 0 & \text{otherwise} \end{cases}$$

The similarity between two cylinders:

$$c_m[\text{lin}(i,j,k)] = \begin{cases} 1 & \text{if } C_m(i,j,k) = 1 \\ 0 & \text{otherwise} \end{cases}$$

$$\hat{c}_m[\text{lin}(i,j,k)] = \begin{cases} 1 & \text{if } C_m(i,j,k) \neq \text{invalid} \\ 0 & \text{otherwise} \end{cases}$$

$$\hat{c}_{ab} = \hat{c}_a \text{ AND } \hat{c}_b$$

$$c_{a|b} = c_a \text{ AND } \hat{c}_{ab} \text{, } c_{b|a} = c_b \text{ AND } \hat{c}_{ab}$$

$$\gamma_{\text{Bit}}(a,b) = \begin{cases} 1 - \frac{\|c_{a|b} \text{ XOR } c_{b|a}\|}{\|c_{a|b}\| + \|c_{b|a}\|} & \text{if } C_a \text{ and } C_b \text{ are matchable} \\ 0 & \text{otherwise} \end{cases}$$

$$\gamma_{\text{Bit}}(a,b) = 0.63$$
Global score and consolidation

\[A = \{a_1, a_2, \ldots, a_{n_A}\} \]
\[B = \{b_1, b_2, \ldots, b_{n_B}\} \]

\[\Gamma \in [0,1]^{n_A \times n_B} \]
\[\Gamma[r,c] = \gamma(a_r,b_c) \]

\[P = \{(r_t,c_t)\}, t = 1, \ldots, n_P, 1 \leq r_t \leq n_A, 1 \leq c_t \leq n_B \]

\[S(A, B) = \frac{\sum_{(r,c) \in P} \Gamma[r,c]}{n_P} \]
Pure local techniques

\[n_p = f(\min\{n_A, n_B\}) \]

Local Similarity Sort (LSS) Local Similarity Assignment (LSA)
The basic idea is to iteratively modify the local similarities based on the compatibility among minutiae relationships.

1. **Preliminary step:**

 \[P_R = \{(r_t, c_t)\}, t = 1, ..., n_R, 1 \leq r_t \leq n_A, 1 \leq c_t \leq n_B \]

 \[n_R = \min\{n_A, n_B\} \quad n_R \gg n_P \]

 \[\lambda_t^0 = \Gamma[r_t, c_t] \]

2. **Relaxation step:**

 \[\lambda_t^i = w_R \cdot \lambda_t^{i-1} + \left(1 - w_R\right) \cdot \frac{\sum_{k=1}^{n_R} \rho(t, k) \cdot \lambda_k^{i-1}}{n_R-1} \]

 \[\rho(t, k) = \prod_{i=1}^{3} Z(d_i, \mu_i^\rho, \tau_i^\rho), \]

 \[d_1 = |d_S(a_{r_t}, a_{r_k}) - d_S(b_{c_t}, b_{c_k})| \]

 \[d_2 = |d_\phi(d_\theta(a_{r_t}, a_{r_k}), d_\theta(b_{c_t}, b_{c_k}))| \]

 \[d_3 = |d_\phi(d_R(a_{r_t}, a_{r_k}), d_R(b_{c_t}, b_{c_k}))| \]

 \[\varepsilon_t = \frac{\lambda_t^{n_{rel}}}{\lambda_t^0} \]
In the preliminary step, the n_R pairs are selected using the LSS technique.
In the preliminary step, the n_R pairs are selected using the LSA technique.
Experimental evaluation (1)

Benchmark datasets:
- four FVC2006 fingerprint databases (DB1, DB2, DB3, DB4);
- the datasets have been obtained using five ISO-compliant minutiae extractors (called a, b, c, d, e) provided by five of the best performing FVC2006 participants.

Algorithms evaluated:
- MCC16 ($N_S=16$, $N_D=6$);
- MCC16b ($N_S=16$, $N_D=6$, bit-based implementation);
- MCC8b ($N_S=8$, $N_D=6$, bit-based implementation);
- Jiang;
- Ratha;
- Feng.
A new representation and matching technique for fingerprint recognition

Accuracy on DB2

Efficiency

Average matching times over all datasets (milliseconds)

<table>
<thead>
<tr>
<th></th>
<th>T_{cs}</th>
<th>T_{ls}</th>
<th>T_{gs}</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCC16</td>
<td>21.0</td>
<td>21.0</td>
<td>4.3</td>
</tr>
<tr>
<td>MCC16b</td>
<td>17.3</td>
<td>1.2</td>
<td>0.5</td>
</tr>
<tr>
<td>MCC8b</td>
<td>4.2</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Jiang</td>
<td>1.0</td>
<td>0.8</td>
<td>0.4</td>
</tr>
<tr>
<td>Ratha</td>
<td>1.0</td>
<td>250.7</td>
<td>0.5</td>
</tr>
<tr>
<td>Feng</td>
<td>0.2</td>
<td>12.3</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Average memory size of the local structures, over all datasets, measured in bytes

<table>
<thead>
<tr>
<th>Raw format</th>
<th>Compressed format</th>
<th>Compressed format</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(rar)</td>
<td>(zip)</td>
</tr>
<tr>
<td>Size</td>
<td>Size</td>
<td>Ratio</td>
</tr>
<tr>
<td>MCC16</td>
<td>209253</td>
<td>103766</td>
</tr>
<tr>
<td>MCC16b</td>
<td>7630</td>
<td>1457</td>
</tr>
<tr>
<td>MCC8b</td>
<td>1913</td>
<td>605</td>
</tr>
<tr>
<td>Jiang</td>
<td>1068</td>
<td>608</td>
</tr>
<tr>
<td>Ratha</td>
<td>26543</td>
<td>19487</td>
</tr>
<tr>
<td>Feng</td>
<td>1428</td>
<td>567</td>
</tr>
</tbody>
</table>
Minutia Cylinder-Code: A new representation and matching technique for fingerprint recognition
Conclusions and future works

• Conclusions:
 – Local structure characteristics:
 • fixed radius structure;
 • fixed-length descriptors
 • bit-oriented representation;
 – Matching algorithm characteristics:
 • high accuracy;
 • simple and fast;
 • suitable to be used on embedded systems/smart cards;
 – Patent pending;

• Future researches:
 – Fingerprint indexing;
 – Template protection.